Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhancing discrete choice models with representation learning
 
research article

Enhancing discrete choice models with representation learning

Sifringer, Brian
•
Lurkin, Virginie
•
Alahi, Alexandre
2020
Transportation Research Part B: Methodological

In discrete choice modeling (DCM), model misspecifications may lead to limited predictability and biased parameter estimates. In this paper, we propose a new approach for estimating choice models in which we divide the systematic part of the utility specification into (i) a knowledge-driven part, and (ii) a data-driven one, which learns a new representation from available explanatory variables. Our formulation increases the predictive power of standard DCM without sacrificing their interpretability. We show the effectiveness of our formulation by augmenting the utility specification of the Multinomial Logit (MNL) and the Nested Logit (NL) models with a new non linear representation arising from a Neural Network (NN), leading to new choice models referred to as the Learning Multinomial Logit (L-MNL) and Learning Nested Logit (L-NL) models. Using multiple publicly available datasets based on revealed and stated preferences, we show that our models outperform the traditional ones, both in terms of predictive performance and accuracy in parameter estimation. All source code of the models are shared to promote open science.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Enhancing Discrete Choice Models with Representation Learning.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.98 MB

Format

Adobe PDF

Checksum (MD5)

422ec90329643f18a482a739360e0196

Loading...
Thumbnail Image
Name

1812.09747.pdf

Access type

openaccess

License Condition

CC BY-NC-ND

Size

3.01 MB

Format

Adobe PDF

Checksum (MD5)

da59873a460f5a4395e18c9101e329e1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés