Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimizing Information Leakage in Multicloud Storage Services
 
research article

Optimizing Information Leakage in Multicloud Storage Services

Zhuang, Hao  
•
Rahman, Rameez
•
Hui, Pan
Show more
2016
IEEE Transactions on Cloud Computing

Many schemes have been recently advanced for storing data on multiple clouds. Distributing data over multiple cloud storage providers automatically provides users with a certain degree of information leakage control, for no single point of attack can leak all the information. However, unplanned distribution of data chunks can lead to high information disclosure even while using multiple clouds. In this paper, we study an important information leakage problem caused by unplanned data distribution in multicloud storage services. Then, we present StoreSim, an information leakage aware storage system in multicloud. StoreSim aims to store syntactically similar data on the same cloud, thus minimizing the user's information leakage across multiple clouds. We design an approximate algorithm to efficiently generate similarity-preserving signatures for data chunks based on MinHash and Bloom filter, and also design a function to compute the information leakage based on these signatures. Next, we present an effective storage plan generation algorithm based on clustering for distributing data chunks with minimal information leakage across multiple clouds. Finally, we evaluate our scheme using two real datasets from Wikipedia and GitHub. We show that our scheme can reduce the information leakage by up to 60% compared to unplanned placement. Furthermore, our analysis on system attackability demonstrates that our scheme makes attacks on information more complex.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

08301011.pdf

Access type

openaccess

Size

1.01 MB

Format

Adobe PDF

Checksum (MD5)

ff53a6e16cd38c0888a9687676ed3150

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés