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1 Introduction and summary

Extended operators provide interesting probes of generic quantum field theories (QFT).

The path-integral with the insertion of a defect describes the response of a theory to the

presence of an impurity — see e.g. [1, 2] — its interaction with a boundary, an interface,

or heavy source like a Wilson line — see [3–5] for some recent work on the topic. Defects

are also a useful tool in more abstract constructions: for instance, they even capture
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information theoretic aspects of quantum field theory [6–8]. The study of general properties

of defects embedded in conformal field theories (CFTs), in particular, has a long history

dating back at least to the pioneering work of Cardy on two dimensional CFTs [9]. In

higher dimensions, the successes of the conformal bootstrap of the four-point function of

local operators [10] — see [11] for an introduction and references — has encouraged similar

explorations in the domain of defect CFT. Studies of the bootstrap constraints on defects

in higher dimensions have appeared in recent years [12–16]. Symmetry constraints on

correlation functions of local operators with a defect have also been analyzed [17, 18], and

in [19] the Mellin formalism was adapted to boundary CFTs. The present work fits in this

program. We consider the simplest correlator which in the presence of a defect is subject

to a crossing constraint, i.e. the two-point function of local operators. We define a new

set of cross ratios, and we illustrate their convenience in the computation of the conformal

blocks. Finally, we use the new coordinates to elucidate some aspects of the convergence

of the OPE decomposition of the two-point function.

Before discussing the details, let us define the main player. A conformal defect is here

taken to be a modification of the theory along a submanifold, which reduces the spacetime

symmetry to the conformal transformations that preserve the submanifold. We also assume

this operator to have a nontrivial overlap with the vacuum, so that its expectation value

can be normalized to one. We shall focus on the case of a spherical or flat defect — the

two cases being in fact the same up to conformal anomalies, which we can safely ignore

here since we only study correlation functions of the defect with local operators. The large

residual symmetry group preserved by this kind of defects makes them the obvious place to

start. Notice however that a systematic study of perturbations around a flat or spherical

defect is possible in terms of the displacement operator — see e.g. [7, 18, 20] — so that

complete knowledge of this highly symmetric case is in principle sufficient to study a defect

of generic shape. We shall always use the following convention:

p = dimension of the defect,

q = codimension of the defect, (1.1)

d = dimension of spacetime,

so that of course p+ q = d. The defect symmetry group is then SO(p+ 1, 1)× SO(q), the

first factor accounting for conformal transformations on the defect, the second for rotations

around it. The q = 1 case is degenerate, and we shall sometimes treat it separately.

The ordinary fusion of local operators is hereafter called the bulk OPE, and is schemat-

ically denoted as follows:

O1(x1)O2(x2) ∼
∑
O
c12OO(x2) . (1.2)

Local operators of the bulk theory are labeled as usual by their scaling dimension and

SO(d) representation:

O : {∆, l}. (1.3)

In the presence of a conformal defect, a new OPE channel opens. A local operator

can be fused with the defect. As it can be proven by doing radial quantization centered
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in a point on the defect, the result of the fusion is a convergent sum over local excitations

on the defect, which we call defect operators. We call this the defect OPE channel, and

denote it schematically as follows:

O(x) ∼
∑
Ô
bOÔÔ(xa) . (1.4)

In our conventions, the presence of the defect is understood, defect operators are denoted

with a hat, and letters from the beginning of the alphabet (a, b, . . . ) are used to denote

directions parallel to the defect. We denote orthogonal directions with letters from the mid-

dle of the alphabet (i, j, . . . ).1 In the schematic equations (1.2) and (1.4), we kept explicit

the bulk-to-bulk and the bulk-to-defect OPE coefficients (c12O, bOÔ), but we suppressed

all the kinematics and the spin indices. In particular, the defect operators are labeled by

their quantum numbers under the defect algebra so(p+ 1, 1)× so(q):

Ô : {∆̂, l̂, s}, (1.5)

where ∆̂ is the scaling dimension, l̂ is the spin under so(p) and s is the spin under so(q).

We refer l̂ and to s as the parallel and transverse spin respectively. The identity might

appear in the defect OPE, in which case the bulk operator O acquires an expectation value.

Following the literature, we denote this coefficient differently:

bO 1 ≡ aO. (1.6)

It is sometimes useful to consider a third OPE channel. Consider a spherical defect. We

could replace it by a sum over local operators placed, say, at the center of the sphere [21–

23]. In correlation functions, this is equivalent by conformal invariance to the fusion of

all other operators. In radial quantization, this replacement provides the decomposition of

the defect in a complete basis of local operators:

|defect〉 =
∑
O
aO |O〉 . (1.7)

The coefficients in the decomposition are the one-point functions in eq. (1.6), up to the

kinematics that we are still suppressing. Analogously, a defect excited by a local defect

operator generates another state in radial quantization, whose decomposition now involves

the bOÔ, and so on. Hence, defects are not new states in the Hilbert space of the bulk

theory in radial quantization. However, as pointed out, a defect comes equipped with a

new Hilbert space generated by defect operators. Given a correlation function involving

local operators and defects, we could insert a resolution of the identity in terms of the

bulk or the defect Hilbert spaces. The compatibility of the two OPE decompositions is a

crossing constraint involving the coefficients bOÔ. Let us finally mention that one could

also fuse two defects, but we do not treat this problem here: in what follows, the presence

of a single conformal defect is always understood.

1This is the notation for a flat defect. For the conventions in the spherical case we refer to subsection 2.1.
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The focus of this paper is on the simplest of the crossing constraints: the one involving

a two-point function of bulk local operators in the presence of a conformal defect. The

presence of the defect is denoted with a subscript:

〈O1(x1)O2(x2)〉D . (1.8)

The two-point function admits two OPE decompositions: one can plug in the bulk

OPE (1.2) or the defect OPE (1.4). The resulting crossing equation can be written in

the following way, when O1 and O2 are scalar operators:

〈O1(x1)O2(x2)〉D =
∑
O
c12OaOGO(x1, x2) =

∑
Ô
bO1ÔbO2ÔĜÔ(x1, x2) . (1.9)

The conformal partial waves GO(x1, x2) and ĜÔ(x1, x2) are fixed by symmetry. In the

case of a defect of codimension one (q = 1), both the bulk and defect channel conformal

partial waves are known in closed form when the external primaries are scalars or spin

2 operators [17, 19]. In [18], the case of higher codimension was considered, for scalar

external operators. In this paper, the defect channel partial waves were found in closed

form, while recurrence relations in a lightcone expansion were given for the bulk channel

partial waves of symmetric traceless tensors. Furthermore, in the special case q = 2 the

bulk channel partial waves were mapped into those of the ordinary four-point function of

local operators.

The two-point function (1.8) has two cross ratios, except in the degenerate case q = 1.

The main purpose of this paper is to define two new pairs of cross ratios, which are

convenient in studying the bulk and defect OPE decompositions respectively. The new

cross-ratios have properties similar to the radial coordinates defined in [24] for the ordinary

four-point function, which prompts us to also refer to them as radial coordinates. We define

the radial coordinates in section 2, after a review of the embedding formalism and its

application to the study of defect CFTs. Along the way, we present a general classification

of the cross ratios involved in a generic correlation function. Section 3 is dedicated to

the conformal partial waves for scalar external operators. We show how to compute the

partial waves in the radial expansion by applying methods which are routinely used in the

case of the four-point function: a recursive solution to the Casimir equation [25], and the

Zamolodchikov expansion [26]. In section 4 we discuss the convergence properties of the

bulk and the defect OPEs. We show that the radius of convergence of the radial expansion

equals the region of convergence of the OPE. In the case of identical external operators, we

also give an estimate of the rate of convergence of the defect OPE decomposition, following

in the footsteps of [24]. Finally, in subsection 4.2, we contrast the radial expansion with the

expansion of the bulk channel blocks in the cross ratio ξ — see eq. (2.31) below — which is

normally used in the defect CFT literature. It is remarkable that the latter stops converging

at ξ = 1, which is precisely the point used so far in the numerical bootstrap [12, 13]

with either the extremal functional [10] or the determinant method [27]. This is not

an issue for the bootstrap of codimension one defects, since the corresponding blocks are

known in closed form. The radial coordinates are instead crucial to bootstrap more general
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defects. A certain amount of technical details and explicit results is relegated to the

appendices. Finally a Mathematica notebook that computes the bulk channel conformal

blocks is included in the submission of the paper.

2 Defect CFTs and radial coordinates

2.1 Embedding space formalism

We begin this section by reviewing the embedding space formalism for d dimensional

CFTs [28]. We uplift each point in the physical space Rd to a point on the null cone

of the embedding space R1,d+1 defined by

null cone =
{
PM ≡

(
P 0, Pµ, P d+1

)
∈ R1,d+1 : PMPM = 0

}
, (2.1)

where PMPM ≡ −(P 0)2 + PµP νδµν + (P d+1)2. The physical space is then described by

the set of rays P ∼ αP (with α > 0). In particular, x ∈ Rd is obtained by projecting P

onto the Poincaré section P d+1 + P 0 = 1, parametrized by

PPoincaré =

(
1 + x2

2
, xµ,

1− x2

2

)
. (2.2)

Other conformally flat spaces are recovered by projecting onto different sections. For

instance, consider the section δµνP
µP ν = 1. This is naturally parametrized by a Euclidean

time τ ∈ R and a unit vector nµ ∈ Sd−1 ⊂ Rd,

Pcyl = (cosh τ, nµ,− sinh τ) . (2.3)

The induced line element is ds2 = dτ2 + dΩ2
Sd−1 , which is the metric on the cylinder

R× Sd−1. The Poincaré and the cylinder sections are simply related:

PPoincaré = eτPcyl, r = eτ . (2.4)

The usefulness of the embedding space formalism stems from the following fact: conformal

transformations of the physical space act as Lorentz transformations in embedding space.

It is not hard to understand how to describe in this formalism a defect of dimension

p and codimension q, embedded in a p + q = d dimensional CFT [18]. In the embedding

space R1,d+1, the defect is a p + 2 dimensional time-like plane which goes through the

origin and intersects the (d + 1)-dimensional light-cone. Indeed, the plane preserves the

defect conformal group SO(p + 1, 1) × SO(q). The projection of the defect plane onto

the Poincaré section is generically a p-sphere. A flat defect is obtained as a special case,

when the axis P− = P 0 − P d+1 is contained in the defect plane.2 Since all spheres are

conformally equivalent to each other, one can keep in mind a single configuration, without

2A proof of this statement goes as follows. A plane in embedding space is described by q linear equations

ciMP
M = 0, i = 1, . . . , q. Projected onto the Poincaré section, the system defines the defect in Euclidean

d−dimensional space. For it to be flat, the equations should still be linear in xµ, so the term ci−P
− = ci−x

2

must vanish.
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P 2

P 1

P 0

P 1
P 2

P 0

Figure 1. Both pictures represent the example of a (d + 2) = 3 dimensional embedding space,

labelled by PM = (P 0, P 1, P 2). We show the null cone, the defect plane and the Poincaré section

(in red). In the left picture, the P− axis lies on the defect plane. The latter intersects the Poincaré

section in a single point (in yellow), which in physical space corresponds to a flat defect. In the

right picture, the P 1 direction is parallel to the defect plane, while P− does not lie on it. The defect

plane intersects the Poincaré section along P 1 in two points. This is a spherical defect centred in

the origin.

loss of generality.3 In practice, it will be useful to consider explicitly two situations: a

flat defect passing through the origin, and a spherical defect centered in the origin, whose

radius we set to one. It is easy to see that the former is realized by choosing both P 0 and

P d+1 among the parallel directions, while the latter corresponds to a defect plane lying at

P d+1 = 0. The two situations are represented in figure 1.

It is convenient to introduce projectors Π• and Π◦ onto the space parallel and or-

thogonal to the defect plane. Correspondingly, in addition to the full d + 2-dimensional

scalar product

P ·Q ≡
∑
M

PMQM , (2.5)

we introduce the scalar products in parallel and transverse directions

P •Q ≡ P ·Π• ·Q (parallel) , (2.6)

P ◦Q ≡ P ·Π◦ ·Q , (orthogonal) . (2.7)

We can select the shape of the defect in physical space by specifying the form of the

projectors Π• and Π◦:

Π◦ = diag(0, 0 . . . 0︸ ︷︷ ︸
p

, 1 . . . 1︸ ︷︷ ︸
q

, 0) =⇒ flat defect ,

Π◦ = diag(0, 0 . . . 0︸ ︷︷ ︸
p+1

, 1 . . . 1︸ ︷︷ ︸
q−1

, 1) =⇒ spherical defect .
(2.8)

In other words, P d+1 is among the orthogonal coordinates for a flat defect and the par-

allel ones for a spherical defect. Similarly, Π• follows from the relation Π• + Π◦ =

3For instance, the action of Pµ = Jµ− leaves the P− axis invariant and so translates a flat defect without

deforming it, etc. A detailed analysis can be found, for instance, in [22].
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diag(−1, 1, . . . , 1). The intersection of the defect plane with a different section of the

cone yields the image of a spherical or flat defect under Weyl transformations. In practice

to project onto any section — e.g. the Poincaré or the cylindrical section — we just need

to choose a parametrization of the points — e.g. (2.2) or (2.3) — and to specify a form for

the projector Π ◦ according to (2.8).

These definitions are enough to study any defect conformal field theory. However, it is

useful to introduce some extra notations which simplifies the expressions in real space. We

define a splitting of the real space indices µ = 1, . . . , d of a vector x ∈ Rd into parallel

and transverse directions labelled respectively by the letters a, b, . . . and i, j, . . . . We

consequently define three different scalar products4 for vectors x, y ∈ Rd: the full product

x · y ≡ xµyνδµν and the parallel and transverse products

x • y ≡ x · π• · y ≡
∑
a

xa ya , (parallel) , (2.9)

x ◦ y ≡ x · π◦ · y ≡
∑
i

xi yi , (orthogonal) . (2.10)

Here we denoted by π • and π ◦ the projectors onto parallel and orthogonal components.

The products satisfy the relation x · y = x • y+ x ◦ y. Again, the splitting between parallel

and transverse directions is different if we consider flat or spherical defects,

π◦ = πq ≡ diag(0 . . . 0︸ ︷︷ ︸
p

, 1 . . . 1︸ ︷︷ ︸
q

) =⇒ flat defect ,

π◦ = πq−1 ≡ diag(0 . . . 0︸ ︷︷ ︸
p+1

, 1 . . . 1︸ ︷︷ ︸
q−1

) =⇒ spherical defect .
(2.11)

Notice that in the spherical case we call ‘parallel’ the p+ 1 directions in which the defect

is embedded. These directions are in fact parallel to the defect plane in embedding space.

Of course, the definition of π• follows from (π• + π◦)µν = δµν . To avoid confusion, we will

often remind the reader which convention for the scalar product we are using.

2.2 Correlation functions and cross-ratios

The aim of this paper is to define a convenient set of cross ratios for the study of a two-point

function of bulk primaries. However, for completeness, we begin by a general classification.

Consider a correlation function of n bulk primaries Oi with dimensions ∆i and m defect

primaries Ôi with dimensions ∆̂i. For notational simplicity we refer to scalar operators:〈
n∏
i=1

Oi(Pi)
n+m∏
j=n+1

Ôj(P̂j)
〉

. (2.12)

We denoted as P̂j the insertion points of the defect operators: it is understood that Π◦ ·
P̂ = 0. We would like to classify the conformal invariant cross ratios for the correlation

function (2.12). Let us start by counting them. One way is to organize the coordinates

4With some abuse of notation, the products in embedding space and in physical space will be denoted

by the same symbols. We hope that this is not a source of confusion.
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n+m n Number of cross ratios

≥ p+ 2

≥ q 2dn+2pm−q(q−1)−(p+2)(p+1)
2

< q n(n+1)+2p(n+m)−(p+2)(p+1)
2

< p+ 2

≥ q 2qn−q(q−1)+(n+m)(n+m−3)
2

< q n(n+1)+(n+m)(n+m−3)
2

Table 1. Number of cross ratios in (2.12): n and m are the numbers of bulk and defect operators

respectively. Notice that the middle cases involve restrictions on the relation between dimension

and codimension: p+ 2 ≶ q +m respectively.

PM of the n bulk points and the m defect points in a rectangular matrix (d+ 2)× (n+m).

One can then reduce the number of non vanishing components by applying elements of

SO(p+1, 1)×SO(q). Of course, the number of independent components is also constrained

by projectiveness (PM ∼ λPM ) and nullity (P 2 = 0). The final count depends on the

number columns and of rows in the orthogonal and parallel subspaces. We summarize it

in table 1.

We now explicitly present the set of cross ratios, providing p and q are large enough,

that is, corresponding to the last row of table 1. It is convenient to treat separately the

case n = 0. If all the points are on the defect, one can simply use the usual basis of cross

ratios appropriate for a p-dimensional CFT:

uijkl ≡
(P̂i • P̂j)(P̂k • P̂l)
(P̂i • P̂k)(P̂j • P̂l)

. (2.13)

When at least a bulk point is involved, a basis can be chosen as follows. We define three

classes of cross ratios, depending on the number of defect points involved, zero, one, or two:

u?ij ≡
(Pi ? Pj)√

(Pi •Pi)(Pj •Pj)
, ? = • , ◦ , (2.14a)

uı̂,jk ≡
(P̂i •Pj)
(P̂i •Pk)

√
(Pk •Pk)
(Pj •Pj)

, (2.14b)

uı̂̂,k ≡
(P̂i • P̂j)(Pk •Pk)
(P̂i •Pk)(P̂j •Pk)

. (2.14c)

The minimum number of bulk operators associated to each class is consistent with the

fact that one-point functions, bulk-to-defect and defect-to-defect two-point functions are

all fixed by conformal invariance. The cross ratios (2.14) are not all independent. In

particular, we signal the relations uı̂,k k+l =
∏k+l−1
j=k uı̂,j j+1 and uı̂̂,k = uı̂̂,luı̂,klû,kl. A

set of cross ratios which are independent when p and q are large enough can be chosen

– 8 –
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as follows:

Cross Ratios Number

u?ij ? = • , ◦ 1 ≤ i < j ≤ n n(n− 1)

uı̂,j j+1 i = n+ 1, . . . , n+m j = 1, . . . n− 1 m(n− 1)

uı̂̂,1 n+ 1 ≤ i < j ≤ n+m m(m−1)
2

(2.15)

Notice that by summing the numbers in the last column of (2.15) we recover the counting

in the last row of table 1.

2.3 The ρ coordinates

The focus of this paper is the two-point function of bulk primaries:

〈O1(P1)O2(P2)〉D =
1

(P1 ◦P1)
∆1
2 (P2 ◦P2)

∆2
2

f(u1, u2) . (2.16)

This correlator is a function of two cross ratios, generically denoted as u1, u2. As we

recalled in the introduction — see eq. (1.9) — a two-point function admits two partial

wave decompositions. We shall now define two pairs of cross ratios, which are useful in

studying the defect OPE and the bulk OPE respectively. As we shall see in the following,

the cross ratios have analogous properties to the ρ coordinates defined in [24] and studied

in detail in [25].

The new cross ratios are most naturally defined on the cylinder Sd−1 × R. Choosing

how to embed the defect on the cylinder is equivalent to the choice of the origin in radial

quantization on the plane Rd. In an ordinary CFT, translational invariance implies that

the spectrum on the sphere does not depend on this choice. On the contrary, when a defect

is present, radial quantization around a point on the defect yields the spectrum of defect

operators. Now, we first define coordinates suitable for the study of the bulk OPE, and

then we turn to the defect OPE.

Bulk channel. If we are interested in the bulk channel conformal block decomposition,

it is convenient to choose the vacuum of the homogeneous CFT both as in and as out-state.

In embedding space, we choose the cylindrical section (2.3) and the splitting suitable for

a spherical defect in (2.8), so that on the cylinder the defect is an Sp sitting at τ = 0, see

figure 2. We further pick the position of the two primaries as follows:

P1 = (cosh τ, n,− sinh τ) , P2 = (cosh τ,−n,− sinh τ) , (2.17)

where n is a unit vectors in Rd. This naturally leads to the definition of the following

cross ratios:

r ≡ eτ , η2 ≡ n •n , (2.18)

where the parallel product is the one in physical space, eq. (2.9), and is defined according

to the spherical splitting in (2.11). It is sometimes best to think in terms of the complex

version of the coordinates:

ρ = reiθ, ρ̄ = re−iθ, η = cos θ. (2.19)

– 9 –
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τ

0

n

O1

O2

b

b

Figure 2. The configuration corresponding to eq. (2.17). The defect is marked in red, and lies on

one equator of the sphere at τ = 0. The local operators are placed at equal generic time, on the

orthogonal equator, in opposite points.

When we project the configuration (2.17) onto the Poincaré section, that is we simply use

eq. (2.4), we obtain the configuration shown in figure 3, with

P1 =

(
1 + r2

2
, rn,

1− r2

2

)
P2 =

(
1 + r2

2
,−rn, 1− r2

2

)
. (2.20)

The configuration is analogous to the one of the ρ coordinate for the four-point function,

but the fundamental domain is different: (r, η) can be restricted to lie in the region

D = {|ρ| ≤ 1,<ρ ≥ 0,=ρ ≤ 0}, (2.21)

because of the symmetries r → 1/r and η → −η. The second symmetry is absent in the

case of a four-point function of non-identical operators: it is implemented, for instance, by

a rotation in the plane formed by the axis <ρ and one of the other axes that intersect the

defect. This is an element of SO(p + 1, 1). The constraint on the sign of =ρ follows from

the fact that θ and −θ map to the same value of η.5

Defect channel. Turning our attention to the defect conformal block decomposition,

the natural choice is to center the radial quantization on a point belonging to a flat defect.

The Hilbert space of the theory is defined on an Sd−1 marked by the defect along an

Sp−1. The in and out-states are picked to be the ground state in this Hilbert space,

which we refer to as the defect vacuum.6 On the cylinder, the defect is mapped to a

lower dimensional cylinder Sp−1×R, see figure 4. In embedding space, we now choose the

5In fact, one can map θ → −θ via a rotation involving two orthogonal directions. This transformation

reduces to parity when q = 2. If parity is not a symmetry the correlator with a defect of codimension 2

may depend separately on eiθ and e−iθ.
6The latter requirement is in fact the only crucial one: the same result is obtained by doing North-South

pole quantization [29], and choosing two points on the defect as the North and South poles.
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b
O1

O2

(ρ, ρ̄)

n

b

bb
DD θ

Figure 3. The configuration corresponding to eq. (2.20). The defect is spherical and orthogonal

to the plane drawn in the figure, and crosses it at the position marked by the red dots. The

operators O1 and O2 sit at the same radius r, and the position of O1 is parametrized by the

complex coordinates (ρ, ρ̄). The fundamental domain D is highlighted in gray.

τ

0

b b

b

n

O1

b b

b

n′

O2

Figure 4. The configuration corresponding to eq. (2.22). The red lines on the cylinder mark the

position of the defect. Constant time slices are spheres, which in this three dimensional example

are marked by the defect in two opposite poles. The operators O1 and O2 live on the equator of

two spheres inserted at time 0 and τ respectively.

splitting suitable for a flat defect in (2.8), which suggests to split the coordinates of the

unit vector nµ = (na, ni) according to the first of the (2.11) as well. We choose to place

the operator 1 in (τ = 0, na = 0) and the operator 2 at a generic value of τ , but still at

na = 0. In embedding space,

P1 = (cosh 0, 0 . . . 0︸ ︷︷ ︸
p

, n,− sinh 0) P2 = (cosh τ, 0 . . . 0︸ ︷︷ ︸
p

, n′,− sinh τ) (2.22)

where n and n′ are unit vectors in the sphere Sq. We take as cross ratios the coordinates

of P2, as follows:

r̂ ≡ eτ , η̂ ≡ n ◦n′ , (2.23)
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bb

b

b O1

O2

D

(ρ̂, ¯̂ρ)

n

n′
φ

Figure 5. The configuration corresponding to eq. (2.25). The defect is flat and orthogonal to the

plane drawn in the figure, and crosses it at the position marked by the red dot. The operator O1

sits at unit radius, while the position of O2 is parametrized by the complex coordinates (ρ̂, ¯̂ρ). The

fundamental domain D̂ is highlighted in gray.

where we used the the transverse dot eq. (2.10), still adapted to the flat defect. Also in

this case, let us define the ρ̂-coordinates as

ρ̂ = r̂eiφ, ¯̂ρ = r̂e−iφ, η̂ = cosφ. (2.24)

If we project eq. (2.22) to the plane, we obtain

P1 = (1, 0 . . . 0︸ ︷︷ ︸
p

, n, 0) P2 =

1 + r̂2

2
, 0 . . . 0︸ ︷︷ ︸

p

, r̂n′,
1− r̂2

2

 . (2.25)

We depict the corresponding configuration in figure 5. Despite the similarity with the (z, z̄)

parametrization of the 4 point function without defect, the range of the ρ̂ coordinate is

restricted to the region

D̂ = {|ρ̂| ≤ 1,=ρ̂ ≥ 0}. (2.26)

Indeed, an inversion τ → −τ maps every point with r̂ > 1 to this fundamental region,7

and a rotation in transverse space exchanges ρ̂ and ¯̂ρ.8 This is to be contrasted with the

four-point function. In the latter case, the inversion has already been used to send an

insertion to infinity, and is unavailable.

We would further like to point out that the relation ρ(ρ̂) takes the following famil-

iar form:

ρ =
1−√ρ̂
1 +
√
ρ̂
, ρ̂ =

(1− ρ)2

(1 + ρ)2
. (2.27)

Analogous formulae hold for ρ̄(¯̂ρ). This is the same as the usual ρ(z) relation four the

four-point function, once we replace z → 1− ρ̂. Notice that, while this relation is invertible

7In fact, a rotation by an angle π in the (P0, PA) plane, A being any parallel direction, has the same

effect. Parity invariance is therefore irrelevant for this statement.
8The latter is reduced to parity in codimension 2. If parity is broken, correlation functions might be

functions of eiφ and e−iφ separately.
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everywhere in the complex ρ̂ plane, the disc |ρ̂| < 1 is mapped to the half-disc with <ρ > 0,

concordantly with the fundamental domain discussed for the pair (r, η). Furthermore,

=ρ̂ > 0 is mapped into =ρ < 0, which is why we chose =ρ < 0 as the fundamental domain

for ρ in eq. (2.21). This is done for consistency, but of course it has very little importance

in the following.9 For reference, let us also report the relation between (r, η) and (r̂, η̂):

r =

√
1 + r̂ −

√
2r̂(1 + η̂)

1 + r̂ +
√

2r̂(1 + η̂)
, η =

1− r̂√
1 + r̂2 − 2r̂η̂

, (2.28)

r̂ =
1 + r2 − 2rη

1 + r2 + 2rη
, η̂ =

1− 6r2 + 4η2r2 + r4

1 + 2r2 − 4η2r2 + r4
. (2.29)

Let us finally mention the degenerate case of a codimension one defect. Only one cross

ratio survives in this case. Indeed, the transverse and parallel products in physical space

— eqs. (2.9), (2.10) — become trivial: for a flat defect x ◦ y = xdyd, while for a spherical

defect x • y = x · y. It follows that η = 1 and η̂ = ±1 identically. If the defect is a

boundary, η̂ = 1, while η̂ = −1 for a correlation function of operators placed on opposite

sides of an interface. It is worth mentioning that, via the so-called folding trick, a pair

(CFT1,CFT2) glued at an interface is equivalent to a boundary conformal field theory.

The trick consists in applying a reflection only to, say, CFT2. The kinematic constraints

on correlation functions are then the same as those for the product theory CFT1 × CFT2

with the interface now replaced by a boundary.

2.3.1 Relation with other cross ratios

In [18], the following pairs of cross ratios were used:10

χ = − 1

u •12

= −(P1◦P1)
1
2 (P2◦P2)

1
2

P1•P2
, cosφ = u ◦12 =

P1◦P2

(P1◦P1)
1
2 (P2◦P2)

1
2

, (2.30)

and

ξ = −1

2
(u •12 + u ◦12) = − P1 · P2

2(P1◦P1)
1
2 (P2◦P2)

1
2

, ζ =
1− cosφ

2 ξ
. (2.31)

The two pairs are related by χ = 1/(2 ξ + cosφ). The pair of coordinates (χ, cosφ) is

well suited to study the defect OPE, since the defect OPE limit corresponds to χ → 0

at fixed cosφ. On the other hand, the two bulk operators collide when ξ → 0 at fixed ζ,

which makes the (ξ, ζ) pair more useful when dealing with the bulk OPE. Being simple

rational functions of invariants in embedding space, χ, cosφ, ξ and ζ are especially useful

in explicit, say perturbative, computations, since correlation functions are easily recast as

functions of a subset of these cross ratios. For reference purposes, and in order to make

9An alternative option is to change the map (2.27) so that it interchanges holomorphic and antiholo-

morphic coordinates.
10In fact, in [18] χ was the inverse of the one defined here, up to a factor two: χhere = 2/χthere. We

redefined it here so that χ ∈ [0, 1] in Euclidean signature. Likewise, we set ζhere = 2ζthere, so that ζ ∈ [0, 1]

as well. Finally, ξhere = ξthere/4. This lasr redefinition is in agreement with the conventions used in older

literature e.g. [17].
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0 0.5 1

1

2

Defect OPE

Bulk OPE

B
BM

?

Figure 6. The physical region in (ξ, ζ) coordinates (in gray) is bounded above by the curve ξ = 1/ζ,

corresponding to cosφ = −1. The red curve denotes the radius of convergence of the expansion of

the bulk channel conformal blocks in powers of ξ: the left branch has equation ξ = 1/(1− ζ) — see

subsection 4.2.

some comments, let us write explicitly the changes of coordinates between the cross ratios

in eq. (2.30), (2.31) and ρ, ρ̂.

We begin with ρ,

χ =
1 + r4 + 2

(
1− 2η2

)
r2

1 + r4 + 2 (1 + 2η2) r2
, cosφ =

1− 6r2 + 4η2r2 + r4

1 + 2r2 − 4η2r2 + r4
, (2.32)

ξ =
4|ρ|2

|1− ρ|2|1 + ρ|2 =
4r2

1 + 2r2 − 4η2r2 + r4
, ζ = 1− η2 . (2.33)

and we continue with ρ̂:

χ =
2r̂

1 + r̂2
, cosφ = η̂ , (2.34)

ξ =
|1− ρ̂|2

4|ρ̂| =
1

4

(
r̂ − 2η̂ +

1

r̂

)
, ζ =

2r̂(1− η̂)

1− 2r̂η̂ + r̂2
, (2.35)

Let us make a few comments. First of all, the relations (2.34) are invertible in the region

D̂ in eq. (2.26), and the relations (2.33) in the region D in eq. (2.21). This is in accordance

with the discussion in the previous section. Secondly, one can extract the physical range

of each independent pair of cross ratios directly from the definitions (2.30), (2.31), or from

the maps to the ρ, ρ̂ coordinates. In particular, χ and cosφ vary independently: the

Euclidean domain is the rectangle (χ, cosφ) ∈ [0, 1]× [−1, 1]. The domain of the (ξ, ζ) pair

is slightly more complicated, and so is the one of (ξ, cosφ). We draw the former in figure 6.

This is one reason to prefer the (r, η) pair to study the bulk OPE. As a last remark, our

definition of (r, η), eq. (2.18) is mainly motivated by geometric considerations. However,

formulae (2.32) and (2.33) only depend on r2 and η2, therefore one should consider the

latter as the actual natural variables for the bulk channel decomposition. Accordingly, we

will often see ∂r2 and ∂η2 in the following formulae.

3 The conformal blocks in radial coordinates

One of the advantages of the ρ coordinates is that they have a clean geometric interpre-

tation. In this section, we show how to exploit this fact in the computation of conformal
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blocks. For illustrative purposes, in this work we focus on the correlator of external scalar

primaries (2.16). Nevertheless, we would like to emphasize that the same techniques can

be used to tackle correlation functions of operators which carry non-trivial representations

of SO(d). This is the object of a forthcoming publication [30].

3.1 Bulk channel

The bulk channel partial wave decomposition of the two-point function (2.16) can be writ-

ten as follows:

〈O1(P1)O2(P2)〉D =
∑
O
c12OaO G∆,l(P1, P2)

=
∑
O
c12OaO

O1

O

O2

(3.1)

Recall that Oi are scalar primary operators with dimension ∆i, while O is a primary

operator with dimension and spin ∆, l respectively. Only traceless and symmetric tensors

are exchanged by scalar external primaries. The OPE data c12O and aO appear in the three

point function 〈O1O2O∆,l〉 and in the one-point function 〈O∆,l〉D respectively. We report

them in appendix A, with our choice of normalizations. The quadratic Casimir gives rise

to a second order differential equation:

1

2
(J1 + J2)2G∆l(P1, P2) = −c∆lG∆l(P1, P2) , (3.2)

where the eigenvalue is c∆l = ∆(∆ − d) + l(l + d − 2) and the generators of conformal

transformations are JMN
i ≡ PMi ∂NPi−PNi ∂MPi . The explicit form of the equation is presented

in appendix B. A general solution is not known in a closed form. In the following we present

two techniques to obtain the partial waves G∆l as an expansion in the radial coordinates

introduced in subsection 2.3. As a first step, we write the partial wave in terms of a function

g∆l of the two cross ratios r and η

G∆l(P1, P2) ≡ A(r, η)

(P1◦P1)
∆1
2 (P2◦P2)

∆2
2

g∆l(r, η) . (3.3)

For convenience, we stripped off the function

A(r, η) ≡ (2r)−∆1−∆2
(
r4 − 4η2r2 + 2r2 + 1

) 1
2

(∆1+∆2)
. (3.4)

With this definition the function g∆l depends on the dimensions of the external operators

only through their difference ∆12 = ∆1 − ∆2. Moreover, the partial wave G∆,l and the

conformal block g∆,l are simply related when considered in the bulk radial frame

G∆,l(P1, P2) −→
b.r.f.

(2r)−∆1−∆2 g∆,l(r, η) , (3.5)

– 15 –



J
H
E
P
1
1
(
2
0
1
8
)
1
4
8

where the operation −→
b.r.f.

means that we set the points P1 and P2 to the bulk radial

frame (2.20). Notice that the factor (2r)−∆1−∆2 takes into account the flat space scal-

ing transformation λDO(x)λ−D = λ∆O(λx), D being the generator of dilatations. In fact,

this factor is absent in the cylinder frame (2.17).

We now show how to get g∆,l as an expansion in r. First we explain the meaning of

this expansion in terms of the OPE. Then we obtain two recurrence relations which fix the

coefficients of the expansion, following the ideas of [25, 31, 32, 34]. The first one follows

directly from the Casimir differential operator. The second one is derived by studying the

pole structure in ∆ of the conformal blocks. We include in the submission a Mathematica

file which computes the conformal blocks to a given order in r following both strategies.

3.1.1 A natural expansion

Conformal blocks admit a natural expansion in radial coordinates, where each power of r

measures the energy (on the cylinder) of some exchanged states in the conformal multiplet.

In order to see this in detail, we define the conformal blocks in radial quantization:11

g∆l(r, η) = 〈0̂|rHcylP∆,l O1(n)O2(−n)|0〉 , (3.6)

where P∆,l is the projector onto the conformal family with highest weight labelled by ∆

and l. We used the Hamiltonian on the cylinder Hcyl (a.k.a. the dilatation operator on the

plane) to evolve the operators from the cylinder time τ , to the time 0.

In order to diagonalize the action of Hcyl, it is natural to write the projector as a sum

over a complete basis of bulk states. Equation (3.6) then becomes

g∆,l(r, η) =

∞∑
m=0

r∆+m
l+m∑
j=l−m

∑
d

〈0̂|m, µ1 µ2 ··· µj , d〉〈m, µ1 µ2 ··· µj , d|O1(n)O2(−n)〉 , (3.7)

where we sum over all states at level m of the conformal family, organized in irreducible

representations (irreps) with spin j of SO(d). The index d labels the degeneracy of such

states. The right overlap is fixed by Lorentz symmetry

〈m, µ1 µ2 ··· µj , d|O1(n)O2(−n)〉 = u(m, j, d) n(µ1 · · ·nµj) , (3.8)

up to the coefficient u(m, j, d). In (3.8) and in the following, the parenthesis stands for

symmetrization and subtraction of the traces. The left overlap is fixed in terms of the

following structure

〈0̂|m, µ1 µ2 ··· µj , d〉 = v(m, j, d) π
(µ1 µ2
• · · ·πµj−1 µj)

• . (3.9)

Here we are allowed to use the projector π• — which is here the projector for spherical

defects, according to eq. (2.11) — because the overlap is computed in the vacuum of

the defect theory. Notice that the angular cross ratio is defined by η2 ≡ n · π• · n. In

11To be precise, eq. (3.6) is true up to a numerical factor, coming from the OPE data in eq. (3.1) and

the factor 2 in eq. (3.5).
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formula (3.9) it is clear that the indices µ1 . . . µj need to appear in even number. From

this simple argument we obtain that the exchanged operators in a two-point function of

scalars are in traceless and symmetric representations with even spins.12

Combining (3.7) with (3.8) and (3.9) we obtain the following expansion

g∆l(r, η) = r∆
∑
m≥0

l+m∑
j=max[l−m,0]

w(m, j) Fm,j(r, η) . (3.10)

Here, w(m, j) =
∑

d u(m, j, d)v(m, j, d), while the basis of function Fm,j(r, η) is defined as

Fm,j(r, η) ≡ rmCj(η) . (3.11)

The function Cj(η) plays in defect CFTs the role of the Gegenbauer polynomial in the

ordinary four-point function. It is defined as

Cj(η) ≡ π(µ1 µ2
• · · ·πµj−1 µj)

• n(µ1
· · ·nµj)

=

(
1−j−p

2

)
j
2(

d+j−2
2

)
j
2

2F1

(
− j

2
,
d+ j − 2

2
;
p+ 1

2
; η2

)
.

(3.12)

By applying the Casimir of SO(d) to eq. (3.8), one readily finds that

∇µ∇µCj(η) = −j(j + d− 2)Cj(η) , ∇µ =
∂

∂nµ
− nµ n ·

∂

∂n
, (3.13)

∇µ∇µ being the Laplacian on the unit sphere. For concreteness we table the functions for

the first few values of j.

j Cj(η)

0 1

2 η2 − p+1
d

4 η4 − 2(p+3)η2

d+4 + (p+1)(p+3)
(d+2)(d+4)

6 η6 − 3(p+5)η4

d+8 + 3(p+3)(p+5)η2

(d+6)(d+8) −
(p+1)(p+3)(p+5)
(d+4)(d+6)(d+8)

(3.14)

As it is clear from the table, the prefactors in (3.12) normalize the coefficient of the highest

power of the polynomial to one.

The convenience of the expansion (3.10) stems from the fact that at each level m finitely

many coefficients appear. Specifically, at level m there are at most 2m + 1 unknowns.13

The level m = 0 sets the overall normalization of the conformal block, which can be fixed

12On the other hand, when we fix d and q, we can use the epsilon tensor to write non trivial one-point

functions for operators in more complicated SO(d) representations [18]. In particular, when q = 2, sym-

metric pseudo-tensors with odd spin may be exchanged in the OPE. Here we only consider representations

that are exchanged generically.
13For odd m all the coefficients w(m, j) are zero: the expansion could be written in terms of a powers

series of r2. See the comment after eq. (3.9).
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arbitrarily. For later convenience, we choose w(0, l) = 4∆. This corresponds to setting the

leading OPE limit (small r limit) of the conformal block to

g∆l(r, η) = (4r)∆Cl(η) [1 +O(r2)] . (3.15)

As advertised, we now explain two strategies to fix the coefficients in the radial expan-

sion (3.10).

3.1.2 Casimir recurrence relation

From the Casimir differential equation (3.2), or better from its explicit form in radial

coordinates (B.1), one easily obtains a recurrence relation for the coefficients w(m, j).

First, we classify the action of a set of simple building blocks — we choose r, ∂r, η
2 and ∂η2

— on the basis Fm,j ,
r Fm,j(r, η) = Fm+1,j(r, η)

∂r Fm,j(r, η) = Fm−1,j(r, η)

η2 Fm,j(r, η) = ajFm,j−2(r, η) + bjFm,j(r, η) + Fm,j+2(r, η)

∂η2 Fm,j(r, η) = 1
(η2−1)η2

[
cjFm,j−2(r, η) + djFm,j(r, η) + j

2Fm,j+2(r, η)
] . (3.16)

Here we defined

aj = j(d+j−4)(j+q−3)(d+j−q−1)
(d+2j−6)(d+2j−4)2(d+2j−2)

cj = 2−d−l
2 aj

bj =
d2+d(2j−q−3)+2(j2−2j+2q−2)

(d+2j−4)(d+2j) dj = j(d+j−2)(d−2q+2)
2(d+2j−4)(d+2j)

. (3.17)

Eqs. (3.16)–(3.17) allow to recast any polynomial differential equation — by which we mean

that the building blocks r, ∂r, η
2 and ∂η2 appear polynomially — as a linear equation for

the functions Fm,j with shifted labels m and j. Actually, ∂η2 is special since it also divides

the right hand side by (η2 − 1)η2. However one can always multiply the full differential

equation by powers of (η2−1)η2, thus obtaining the sought linear equation. Applied to the

Casimir equation (B.1), the procedure yields a linear relation for the coefficients w(m, j),

which has the following schematic form∑
(n,k)∈S

cn,k w(m+ n, j + k) = 0 , (3.18)

where cn,k are coefficients that can depend on ∆, l,m, j, d, p and ∆12. The set S is a finite

dimensional set of points, which represents all the possible shifts. We depict S in figure 7.

Notice that one can use eq. (3.18) to express the right most point in terms of a linear

combination of all the points on the left. Therefore eq. (3.18) is a recurrence relation for

the coefficient w(m, j), from which one can iteratively construct the function g∆l(r, η) at an

arbitrarily high order in the radial expansion (3.10). One can easily check that the obtained

expansion (at any given order) solves exactly the Casimir equation (at that order).

We included in the submission a Mathematica notebook that contains the explicit

equation (3.18). Therein we also define a function which builds the conformal blocks at

any given order in r according to equation (3.10). Finally we explicitly check that the

computed conformal blocks satisfy the Casimir equation.
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Figure 7. The set of points S in the recurrence relation for the coefficients w(m+ n, j + k).

3.1.3 Zamolodchikov recurrence relation

In this subsection we obtain a recurrence relation directly for the conformal blocks g∆l

defined in 3.1.1. The main idea was introduced by Zamolodchikov [26] to study d =

2 Virasoro blocks. Generalizations to higher dimensions can be found in [31–35]. The

conformal block can be written as a sum over all the poles in ∆ and the analytic part.

Since the residue at each pole has to be a new conformal block with different labels ∆ and

l (this is proven in odd dimensions in [34]), this expansion provides a natural recursive

formula to compute conformal blocks. We now explain how to apply the same strategy to

the bulk channel conformal block in a defect CFT.

The first step is to express the partial wave as a sum over states in radial quantization,

in the same spirit of eq. (3.7):

aOc12OG∆l(P1, P2) =
∑
α∈HO

〈0̂|α〉〈α|O1(P1)O2(P2)|0〉
〈α|α〉 , (3.19)

where HO is the conformal multiplet associated to the primary O. Using the notation

of [34], we find that at special values ∆ = ∆?
A in the multiplet HO there is a descendant

state |OA〉 (with dimension ∆A = ∆?
A+nA and spin lA), which becomes primary. When this

special event occurs, the multiplet HO becomes reducible, and a new irreducible submul-

tiplet HOA of null states breaks off. Because of the null states, the conformal block (3.19)

has to diverge at ∆ = ∆?
A. In fact, it is possible to prove [34] that in odd dimension the

divergence is just a single pole14 which has residue proportional to the CB labeled by the

primary descendant OA,

G∆l(P1, P2) =
RA

∆−∆?
A

G∆AlA(P1, P2) +O((∆−∆?
A)0) . (3.20)

The coefficient RA can be computed explicitly. It accounts for the different normalization of

the primary descendant with respect to the one used for primary operators. In particular,

14For odd spacetime dimensions it is proved that the conformal blocks only have single poles in ∆. For

even dimensions there can exist higher order poles. However the Zamolodchikov recurrence relation provides

a good analytic continuation in dimensions, which still holds in the limit of even dimension.
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the two point functions 〈OAOA〉, the three point functions 〈O1O2OA〉 and the one point

functions 〈OA〉D are not canonically normalized. Therefore we parametrize RA as follows:

RA = M
(L)
A QAM

(R)
A , (3.21)

where schematically we define

〈OA〉D = M
(L)
A 〈O〉D

〈O1O2OA〉 = M
(R)
A 〈O1O2O〉 ,

〈OAOA〉−1 =
QA

∆−∆?
A

〈OO〉−1 +O((∆−∆?
A)0)

(3.22)

and O is a canonically normalized primary operator with the same quantum numbers as

OA. The pole structure of the conformal blocks in the bulk channel is identical to the one

of a conformal block for a four-point function of local operators. This is not surprising,

since the norm 〈OAOA〉, which governs the position of the poles, does not know of the

presence of the defect. For the same reason, the coefficients M
(R)
A and QA are the same

as the ones computed in [34].15 The only new ingredient is M
(L)
A , which is computed in

appendix B.2.

We can now reconstruct the full conformal block by summing over all the poles in ∆

and the regular part. To do so it is more convenient to use the block h∆l = (4r)−∆g∆l

which has a regular limit for large ∆. The regular part, which we call h∞l, is computed

in eq. (B.5) in appendix B by solving the Casimir equation at large ∆. The final result is

as follows,

h∆l(r, η) = h∞l(r, η) +
∑
A

RA
∆−∆?

A

(4r)nAh∆A lA(r, η) . (3.23)

All the ingredients of this formula have been defined previously in this subsection. The

only missing information is the set of labels ∆?
A,∆A, lA, nA, which again matches what was

already found in [34]. The label A stands for two indices: a type index T = I, II, III and

a natural number n. For each type, the natural number n takes value into different sets

which may be infinite (for type I and III) or finite (for type II). We give the complete set

of labels in the following table:

A ∆?
A nA lA

Type I: n = 2, 4, 6, . . .∞ 1− l − n n l + n

Type II: n = 2, 4, 6, . . . , l l + 2h− 1− n n l − n
Type III: n = 1, 2, 3 . . .∞ h− n 2n l

(3.24)

Notice that the values of nA in the table are only even integers. Odd values would give

rise to odd powers in r in the conformal blocks, which were excluded in subsection 3.1.1.

15Our choice of conventions implies that M
(R)
A corresponds to M

(L)
A in [34].
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We would like to remark that (3.23) can be efficiently used to compute the conformal

blocks in a radial expansion. In fact, this equation should be interpreted as a recurrence

relation for h∆l where the term h∞l is a seed. Each time we iterate (3.23) we are ensured

to obtain higher order contributions in the power series in r, because the numbers nA are

positive. This kind of recurrence relations is in fact the standard technique to compute

conformal blocks for the numerical bootstrap of a four-point function of local operators.

More details about the recurrence relation are described in appendix B.2, where we

review how to construct the primary descendant states OA and we compute the coeffi-

cients RA.

All the definitions that enter in formula (3.23) are summarized in a Mathematica

notebook which we include in the submission. A function which computes the conformal

blocks h∆l at any given order in r using (3.23) is also defined to the notebook. Finally two

checks are added: first, that the computed blocks satisfy the Casimir equation and second,

that they are equal to the blocks generated with the strategy proposed in sections 3.1.1

and 3.1.2.

3.2 Defect channel

We now focus on the defect conformal block decomposition of the two-point function (2.16):

〈O1 (P1)O2 (P2)〉D =
∑
Ô
b1Ô b2Ô ĜÔ(P1, P2)

=
∑
Ô
b1Ôb2Ô

O1

O2

Ô .
(3.25)

The defect operators Ô are labeled by their conformal dimension ∆̂ and their parallel and

perpendicular spins l̂, s. Since the external operators Oi are scalars the operators Ô are

restricted to have l̂ = 0. The OPE data biÔ appear in the two-point function 〈OiÔ〉D. We

report its form in appendix A, with our choice of normalizations.

The defect conformal partial waves ĜÔ(P1, P2) are eigenfunctions of the quadratic

Casimir of the defect group SO(p + 1, 1) × SO(q), which factorizes in a parallel and a

transverse part. We therefore obtain two differential equations:

1

2
(J •1 )2 ĜÔ(P1, P2) = −c •ÔĜÔ(P1, P2) , (3.26)

1

2
(J ◦1 )2 ĜÔ(P1, P2) = −c ◦ÔĜÔ(P1, P2) , (3.27)

where JMN
1 ≡ PM1 ∂NP1

− PN1 ∂MP1
and the suffix • ( ◦ ) means that the indices are first

projected onto the parallel (orthogonal) space via Π◦ (Π•) and then contracted. The

eigenvalues associated to an operator Ô labelled by ∆̂, l̂ = 0, s are

c •
∆̂l̂=0

= ∆̂(∆̂− p) , c ◦s = s(s+ q − 2) . (3.28)
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It is convenient to write the partial waves ĜÔ in terms of conformal blocks ĝÔ which

only depend only on the cross ratios r̂, η̂ :

ĜÔ(P1, P2) ≡ 1

(P1◦P1)
∆1
2 (P2◦P2)

∆2
2

ĝÔ(r̂, η̂) . (3.29)

Notice that ĜÔ is simply related to ĝÔ when computed in the defect radial frame (2.25)

ĜÔ(P1, P2) −→
d.r.f.

1

r̂∆2
ĝÔ(r̂, η̂) . (3.30)

Here −→
d.r.f.

means that the points Pi are set in the radial frame (2.25).

The scalar conformal block in the defect channel was computed in a closed form in [18]

by solving the Casimir equation. As consequence of the factorization of the Casimir, it also

nicely factorizes:

ĝ∆̂,s(r̂, η̂) =W(r̂) Cs(η̂) , (3.31)

where

W(r̂) ≡ r̂∆̂
2F1

(p
2
, ∆̂; ∆̂− p

2
+ 1; r̂2

)
, Cs(η̂) ≡ s!

2s
( q

2 − 1
)
s

C
q
2
−1

s (η̂) , (3.32)

and Cνn(x) is a Gegenbauer polynomial. It is worth to notice that in radial coordinates the

conformal block is particularly simple. In fact for even p, the hypergeometric function in

W reduces to a rational function of r̂. For example for p = 2, 2F1(1, ∆̂; ∆̂; r̂2) = 1
1−r̂2 .

Even if the blocks are known exactly, in the following we show how to obtain them

in two alternative ways. This allows to clarify the solution (3.32) in light of the defect

OPE, included the analytic structure in ∆̂. Furthermore, it is a useful warm for the case

of external operators with spin, which we shall address in a forthcoming paper [30].

3.2.1 A natural expansion

In this subsection we show that the expansion in r̂ descends naturally from the OPE, where

the power of r̂ measures the conformal dimension of the exchanged states in the conformal

multiplet. Since the transverse part of the defect group only consists of rotations, Lorentz

invariance alone determines the function of η̂. The coefficients of the r̂ expansion can

instead be fixed using a recurrence relation that descends from the Casimir equation.

We begin by writing the conformal blocks defined in eq. (3.29) in radial quantization:

ĝ∆̂s(r̂, η̂) =
〈
0̂|O1 (n) r̂HcylP∆̂sO2

(
n′
)
|0̂
〉
, (3.33)

where ∆̂ and s are the dimension and transverse spin of the exchanged defect primary Ô,

and P∆̂s projects onto its multiplet. In terms of a complete set of states,

ĝ∆̂s =

∞∑
m=0

r∆̂+m〈0̂|O1(n)|m, i1 ··· is 〉〈m, i1 ··· is |O2(n′)|0̂〉 . (3.34)

The indices ik belong to the transverse space and accordingly the states |m, i1 i2 ··· is 〉
are in a traceless and symmetric representation of SO(q). Notice that in this case each
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descendant at level m is unique, therefore we can omit the label d of the degeneracy. The

overlap are fixed by Lorentz symmetry to take the following form

〈0̂|O1(n)|m, i1 i2 ··· is 〉 = u(m) n(i1 . . . nis) , (3.35)

where u(m) are numerical coefficients. Here the parenthesis in n(i1 . . . nis) implement sym-

metry and tracelessness for SO(q) representations. Multiplying the left and right overlaps

we automatically obtain the angular part of the conformal block

n(i1 . . . nis)n′(i1 . . . n′is) = Cs(η̂) , (3.36)

as defined in (3.32).

We then obtain the natural expansion

ĝ∆̂s(r̂, η̂) = Cs(η̂) W(r̂) , W(r̂) ≡
∞∑
m=0

w(m) r̂∆̂+m , (3.37)

where w(m) = u(m)ũ(m) and ũ(m) is the coefficient of the right overlap. This ansatz

solves the perpendicular part of the Casimir equation. The parallel part acts on W(r̂)

giving rise to a recurrence relation for the coefficients w(m),

(2∆ +m− 1)(m+ p− 1) w(m− 1)− (m+ 1)(2∆ +m− p+ 1) w(m+ 1) = 0 . (3.38)

This recurrence relation has a unique solution once we fix the initial condition w(−1) = 0,

w(0) = 1 (the value of w(0) sets the normalization of the conformal blocks),

w(2m) =

(p
2

)
m

(∆̂)m

m!
(
−p

2 + ∆̂ + 1
)
m

, w(2m+ 1) = 0 . (3.39)

The series in equation (3.37) can then be resummed, to find the conformal blocks in a

closed form as in (3.31).

3.2.2 Zamolodchikov recurrence relation

We now explain how to develop a recurrence relation for the defect conformal blocks by

studying their analytic properties in the variable ∆̂. We first write the conformal block as

a sum over states in radial quantization

b1Ob2OĜ∆̂s(P1, P2) =
∑
α∈ĤÔ

〈0̂|O1(P1)|α〉〈α|O2(P2)|0̂〉
〈α|α〉 , (3.40)

where ĤÔ is the conformal multiplet associated with the defect primary Ô. Similarly to the

bulk case (see subsection 3.1.3), when ∆̂ = ∆̂?
A a descendant state |ÔA〉 (with dimension

∆̂A = ∆̂?
A + nA and transverse spin sA) becomes primary, the representation ĤÔ becomes

reducible and we expect the following polar structure for the conformal blocks as functions

of ∆̂,

Ĝ∆̂s(P1, P2) =
R̂A

∆̂− ∆̂?
A

Ĝ∆̂AsA
(P1, P2) +O((∆̂− ∆̂?

A)0) . (3.41)
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The coefficient R̂A can again be computed as

R̂A = M̂
(L)
A Q̂AM̂

(R)
A , (3.42)

where 〈O1ÔA〉D = M̂
(L)
A 〈O1Ô〉D and similarly for M̂

(R)
A (where Ô is a canonically normal-

ized primary defect operator with the same quantum numbers as ÔA), while Q̂A comes

from the inverse of the norm of the intermediate state α. Let us start by presenting the

solution. The conformal block is reconstructed from a single tower of null descendants

(type III):16

ĝ∆̂s(r̂, η̂) = (r̂)∆̂ĥ∆̂(r̂)Cs(η̂) ,

ĥ∆̂(r̂) = ĥ∞(r̂) +
∞∑
n=1

R̂III,n(r̂)2n

∆̂− (p2 − n)
ĥ p

2
+n(r̂) .

(3.43)

Here the angular part Cs(η̂) defined in (3.32) is fixed by the leading OPE and is factorized.

The regular part ĥ∞ is easily obtained by solving the parallel part of the Casimir equation

at leading order in large ∆̂,

ĥ∞(r̂) =
(
1− r̂2

)− p
2 . (3.44)

The coefficient of proportionality (3.21) is

R̂III,n ≡
(−1)n−1

(p
2 − n

)
2n

(n− 1)!n!
. (3.45)

Let us now explain how to get eqs. (3.43) and (3.45). The simplicity of the recurrence

relation stems from a constraint which is obvious from eq. (3.35): only defect operators with

vanishing parallel spin couple to a bulk scalar. The form of the defect conformal multiplet

is the one of a p-dimensional CFT: the null states are the same as in table 3.24. Everything

regarding their definition and the computation of their norms was already addressed in [34]

and can be simply used just replacing d with p. But the mentioned constraint implies that

the only coupled descendants are of the form (P •P )n|Ô〉, for n = 1, . . .∞. They become

primaries when ∆̂ = p/2− n, giving rise to the poles of the conformal blocks (3.43). Since

the primary descendants are at level 2n, the blocks at the residue are labeled by ∆̂ = p/2+n.

The coefficient R̂III,n ≡ Q̂III,nM̂
2
III,n is obtained as follows. Q̂III,n is the same as in

eq. (B.12) once replaced d → p and set l = 0. To compute M̂III,n, we consider the two-

point function

〈O1(y)Ôi1...is(x)〉D = bO1Ô y(i1 . . . yis)(y ◦ y)
∆̂−∆1−s

2 (y ◦ y + x •x)−2∆̂ , (3.46)

where the operator O1 is at the origin of the parallel space, therefore y only has transverse

components (namely y = π◦ · y). Taking derivatives of the operator Ô we easily obtain

M̂III,n,

( ∂x • ∂x )n (y ◦ y + x •x)−(p/2−n) ≡ M̂III,n(y ◦ y + x •x)−(p/2+n)(y ◦ y)n , (3.47)

M̂III,n = (−4)n
(p

2
− n

)
2n

. (3.48)

16We name it type III in order to match the bulk channel conventions.
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Notice that when p is an even number, R̂III,n evaluates identically to zero for any

integer n ≥ p/2. This truncation is the reason why the conformal blocks take a simple

rational form when p is even.

4 OPE convergence in defect CFT

We would like to conclude this work with a discussion of the convergence of the defect

and bulk OPEs. In particular, we begin by addressing two separate questions: the region

of convergence of the sum over conformal blocks, and the radius of convergence of the

expansion of the two-point function in powers of r and r̂. Then, in subsection 4.1, we

refine the analysis and bound the rate of convergence of the defect OPE. We cannot do the

same for the bulk OPE, due to the lack of positivity. Instead, in subsection 4.2 we compare

the radial expansion of a single bulk channel block with the expansion in powers of ξ, the

cross ratio defined in eq. (2.31). This further highlights the convenience of the cross ratios

defined in this work. The discussion will make use of standard technology, which can be

found in [24].

Let us first discuss what is the region of convergence of the sum over conformal blocks.

The standard way to prove convergence of an OPE relies on the completeness of a Hilbert

space whose basis elements are in one to one correspondence with the scaling operators of

the theory [24]. This is naturally obtained in radial quantization. The OPE then converges

whenever a sphere can be drawn which separates the insertions to be fused together from

all the others. Different choices of the center of the sphere yield different convergent series

expansions of the same conformal block. Indeed, these choices single out Hilbert spaces

whose basis elements are related by translations. Hence, OPEs centered in different points

differ by the size of the contribution of descendants. The conformal block is insensitive

to this rearrangement. Similarly, defect local operators are in one-to-one correspondence

with states on a sphere centered on the defect, and correspondingly the convergence of the

defect OPE must be discussed using the latter.

In practice, since it is sufficient to establish convergence in the domain D or D̂ in

eqs. (2.21) and (2.26), the fastest approach is to discuss the configurations in figures 3, 5.

In order to fix ideas, we refer to the latter. Let us first consider the bulk OPE. When

ρ̂ = ¯̂ρ < 0, the sphere that separates O1 and O2 degenerates. We conclude that the sum

over bulk blocks converges everywhere in the fundamental region D̂ except on the negative

real axis. Notice that the negative real axis is consistently mapped by eq. (2.27) to the

boundary of D at |ρ| = 1. Let us now turn to the defect OPE. In this case, for every position

ρ̂ inside the unit circle there is a sphere centered on the defect in the origin which separates

O2 from O1. Therefore, the defect OPE converges in the region D̂, except at |ρ̂| = 1.

In the case of a codimension one defect, the transverse space is one-dimensional, but

the previous considerations apply as well. If we name y the transverse coordinate, and O1

is placed at y = 1, O2 can be made to lie in the interval 0 < y < 1 or −1 < y < 0. The

bulk OPE converges in the former region, that is when O1 and O2 lie on the same side of

the interface, while the defect OPE also converges when the interface separates them.
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We now address the second question: the radius of convergence of the radial expansion

of the two-point function. Since the techniques developed in sections 3 provide power

series representations of the blocks, this question is clearly relevant. Again, the standard

strategy is to rewrite the expansion as the decomposition of a vector of a Hilbert space

into an orthogonal basis. This is easy to because the radial coordinates are conjugate to

time evolution on a cylinder. Eqs. (3.7) and (3.34) define projections of the two following

vectors over complete set of states:

|O1O2〉 = O1(rn, z1)O2(−rn, z2) |0〉 , and |O2〉 = O2(r̂n, z1) |0̂〉 , (4.1)

respectively. The projection is simply obtained summing eqs. (3.7) and (3.34) over the

exchanged conformal families. The same equations also define the radial expansions of

the two-point function: convergence of the expansions in r (r̂) at fixed η (η̂) is the same

as convergence of the decomposition of |O1O2〉 and |O2〉 in the bases {|∆,m, j, d〉} and

{|∆̂,m, s〉} respectively, where with respect to eqs. (3.7) and (3.34) we added a label de-

noting the exchanged primary. Now, the convergence of the decompositions of finite norm

states inside scalar products is a property of orthonormal bases in a Hilbert space, so con-

vergence of the power series is guaranteed as long as r < 1 (r̂ < 1). When r = 1 (r̂ = 1),

the norm of |O1O2〉 (|O2〉) in the Hilbert space on the sphere of radius 1 diverges, and

when r > 1 (r̂ > 1) the two-point functions cannot be written in radial quantization in

terms of the overlaps in eqs. (3.6) and (3.33). We learn that the radii of convergence of

the series expansion in r and r̂ match the regions of convergence of the bulk and defect

OPEs respectively. Clearly, we can repeat the previous considerations after projecting the

vectors in eq. (4.1) onto a single conformal family, so the r and r̂ expansions of bulk and

defect blocks converge in the same region. Analyticity of the defect blocks for r̂ < 1 can

be checked explicitly in eq. (3.32), while in appendix C we check the analogous statement

for the bulk blocks of a codimension two defect, which are known exactly. Of course, this

analysis goes through unchanged in the case of external operators with spin.

We conclude the subsection with a remark on the bulk radial expansion of a two-

point function. This expansion is never positive, but as all other OPE decompositions it

can be easily proven that it is absolutely convergent.17 This is a generic property of the

decomposition of a vector in a orthonormal basis. Indeed, consider again the decomposition

of the vector |O1O2〉 in the basis {|∆,m, j, d〉}. If we change arbitrarily the phase of

each coefficient in the decomposition, we obtain another vector of equal, i.e. finite, norm.

Therefore convergence inside correlation functions is again guaranteed.

4.1 Rate of convergence and the density of defect states

In the bootstrap, an important question is the rate of convergence of the OPE represen-

tation of a correlation function. The answer depends of course on the correlation function

itself, and on the choice of kinematics. In [24] — see also [36] — it was shown that the

asymptotic rate of convergence of a four-point function of pairwise identical scalars is ex-

ponential, away from the boundary of the region of convergence of the OPE. This means

17We thank J. Penedones for a discussion on this point.
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that the role of high dimensional operators in ensuring crossing symmetry is limited. On

one hand, this effective decoupling has been beneficial to the bootstrap. It implies that

crossing symmetry constrains the low lying CFT data, rather than just linking the contri-

bution of light operators in one channel and heavy operators in the other. More concretely,

it puts the linear functional method [10] on solid mathematical ground, included the use

of approximations for the conformal blocks, and it gives confidence in the results obtained

with the determinant method [27]. On the other hand, the same decoupling makes it hard

to extract information about high-dimensional operators. This issue can be partially over-

come by combining the output of the numerics with analytic results obtained from the

light-cone bootstrap [37].

Here we apply the method of [24] to the study of the defect OPE decomposition

of a two-point function, and we focus for simplicity on the case of two identical scalar

primaries. Along the way, we establish a result on the density of defect states weighted by

the OPE coefficients, analogous to the one obtained in [24] for the ordinary bulk OPE. As

we remark at the end of the subsection, we are unable to repeat the analysis for the bulk

OPE decomposition.

As a first step, we notice that when η̂ = 1 the expansion in powers of r̂ of the two-point

function has positive coefficients. This follows from reflection positivity on the cylinder,

and is obvious from eq. (3.34), since η̂ = 1 implies n = n′. This will be important in a

moment. We can conveniently express the expansion as a Laplace transform:

〈O(1, n)O(r̂, n)〉D =

∫ ∞
0
dE f̂(E) e−βE , (4.2)

where β = − log r̂. f̂(E) is recognized as a weighted density of defect states via eq. (3.34):

f̂(E) =
∑
Ê

| 〈0̂| O(1, n) |Ê〉 |2 δ(E − Ê). (4.3)

Notice that f̂(E) does not depend on n.18 The asymptotic behavior of f̂(E) for large E is

controlled by the β → 0 limit of the correlator, which in turn is dominated by the identity

in the bulk channel:

〈OO〉D
β→0∼ (1− r̂)−2∆ ∼ β−2∆ , (4.4)

where ∆ is the scaling dimension of O. One can then use the Hardy-Littlewood Tauberian

theorem — see [24] — to turn eq. (4.4) into an asymptotic constraint for the integrated

density defined as:

F̂ (E) =

∫ E

0
dE′f̂(E′). (4.5)

In particular,

F̂ (E)
E→∞∼ E2∆

Γ(2∆ + 1)
, (4.6)

18To be precise, for each descendant of transverse spin s we need to introduce the projector

PÊ = |Ê, i1 ··· is 〉〈Ê, i1 ··· is |, where the transverse indices ik are summed over. The projector commutes

with the transverse rotation generators, therefore in particular: 〈0̂| O(1, n)PÊO(1, n) |0̂〉 does not depend

on the unit vector n.

– 27 –



J
H
E
P
1
1
(
2
0
1
8
)
1
4
8

The theorem is valid for positive densities f̂(E), and the remarks before eq. (4.2) imply

that this is the case. Without further assumptions, the subleading corrections to eq. (4.6)

are only logarithmically suppressed (O(1/ logE)). As in [24], it is instructive to compare

the estimate (4.6) with the unweighted density of states f̂0, which enters the partition

function of the theory on Sd−1 at finite temperature:

ZSd−1(β) =

∫ ∞
0

dE f̂0(E) e−βE , f̂0(E) =
∑

Ê ∈ spectrum

δ(E − Ê) . (4.7)

As β → 0, ZSd−1(β) can be estimated via the flat space free energy density, which on

dimensional grounds has the following behavior:

lim
Vol→∞

1

Vol
logZVol(β) =

kb
βd−1

, kb > 0 . (4.8)

Here ZVol is the partition function on a flat finite geometry of size Vol. Positivity of kb
follows from thermodynamic stability. Notice that the size of the defect, which in (4.7)

marks the Sd−1 along an Sp−1 with the same radius, scales like the volume of the flat

geometry. On dimensional ground, its contribution to log ZVol scales like Vol(p−1)/(d−1) and

is therefore subleading. It follows that the high temperature limit of ZSd−1 is exponentially

enhanced, and this requires an exponentially growing density of states f̂0(E). More details

are presented in [24]. Here we just emphasize that the density of states of a p-dimensional

defect grows like the one of a d-dimensional CFT. This is in accordance, for instance, with

the trivial defect, where the defect states coincide with the bulk ones. The comparison with

the power-law behavior of eq. (4.6) implies that the squared OPE coefficients in eq. (4.3)

are exponentially suppressed.

Still following [24], it is not hard to derive from eq. (4.6) a bound on the convergence

of the tail of the OPE expansion, defined as

L(E∗, β) =

∫ ∞
E∗

dEf̂(E)e−Eβ . (4.9)

We refer the reader to [24] for the details of the proof, and we only report the most

relevant result:

L(E∗, β) .
1

Γ(2∆ + 1)
E2∆
∗ e−E∗β , E∗ � ∆/β , E∗ ≥ EHL . (4.10)

We learn that the defect OPE converges exponentially fast. In eq. (4.10), EHL is the energy

such that the Hardy-Littlewood asymptotics (4.6) starts being valid. EHL ∼ 1/β0, where

in turns at β0 the asymptotics (4.4) starts being valid. The value of β0 depends on the

next operator acquiring a vev in the bulk channel OPE.

Eq. (4.10) estimates the contribution of scaling operators with dimension above a

certain large threshold. It is not hard to apply this estimate to the conformal block de-

composition. The conformal block of a primary of dimension ∆∗ resums the contribution

of infinitely many operators with larger dimension. All these contributions are positive
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when η̂ = 1. Therefore, If we define the tail of the conformal block decomposition in the

notation of eq. (3.3),

G∆̂≥∆̂∗
(r̂, η̂) =

1

r̂∆

∑
Ô∆̂≥∆̂∗

b2Ô ĝÔ(r̂, η̂) , (4.11)

we find that, for η̂ = 1,

G∆̂≥∆̂∗
(r̂, η̂ = 1) .

1

Γ(2∆ + 1)
∆2∆
∗ r̂∆∗ , ∆∗ � ∆/β . (4.12)

We see that the coupling of defect primaries decays exponentially with their

scaling dimensions.

Finally, it is easy to extend the estimate (4.12) to kinematics with η̂ 6= 0. Indeed,

we can start from a representation of the blocks like eq. (3.34) and use Cauchy inequality,

to obtain19 ∣∣ĝÔ(r̂, η̂)
∣∣ ≤ ĝÔ(r̂, η̂ = 1) . (4.13)

It follows that the estimate (4.12) holds for any value of the cross-ratios within the radius

of convergence of the defect OPE. It is interesting to compare eq. (4.12) with the defect

OPE decomposition of the two-point function of the trivial defect. The latter is just an

ordinary two-point function of a scalar primary in a translational invariant CFT. In other

words, the only operator appearing in the bulk block decomposition is the identity. The

comparison suggests that, similarly to the estimate of [24], the exponential convergence

rate r̂∆∗ is likely to be optimal. For instance, taking p = 2, q = 3 and ∆ = 1.6, the tail of

the trivial defect is well fitted, as a function of ∆∗, by C(r̂)∆
γ(r̂)
∗ r̂∆∗ , with γ(r̂) ∼ 1.0÷1.2.

Finally, let us contrast the expansion in powers of r̂ and χ. By inverting eq. (2.34), we

notice two facts. The function r̂(χ) is regular when −1 < χ < 1, and all the coefficients in

the Taylor expansion around χ = 0 are positive. Therefore the region of convergence of the

expansion in powers of χ coincides with the one in r̂. Furthermore, the Hardy-Littlewood

theorem applies at η̂ = cosφ = 1, and the only difference with respect to the previous

discussion is the strength of the singularity in the bulk channel. Dubbing βχ = − logχ, we

get in this case

〈OO〉D
βχ→0∼ (2βχ)−∆ . (4.14)

The tail of the OPE expansion, define as in eq. (4.9) with the replacement β → βχ, is

bounded by the following asymptotics

Lχ(E∗, βχ) .
2−∆

Γ(∆ + 1)
E∆
∗ e
−E∗βχ , E∗ � ∆/βχ . (4.15)

19Consider the vector

|n, Ê〉 = PÊO(1, n) |0̂〉 ,

where the projector PÊ was defined in footnote 18, and the following chain of inequalities:∣∣∣〈n, Ê|n′, Ê〉∣∣∣ ≤√〈n, Ê|n, Ê〉 〈n′, Ê|n′, Ê〉 = 〈n, Ê|n, Ê〉 .

From this eq. (4.13) follows.
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Comparing eqs. (4.15) and (4.10), we conclude that the convergence is faster in the r̂

variable. Indeed, for every choice of kinematics inside the region of convergence (2.26),

r̂ < χ, i.e. βr̂ > βχ. For instance, the usual choice in the numerical defect bootstrap is

ξ = 1 [12, 13], which corresponds to χ = 1/3 ' 0.33 and r̂ = 3− 2
√

2 ' 0.17.

The results of this subsection do not extend trivially to the bulk channel, due to the lack

of a positive configuration. The radial expansion converges absolutely, but the singularity

of the sum of the absolute values in the crossed-channel is not known, and so cannot be

used to give an estimate.

4.2 The bulk channel block in the ξ-expansion and the Landau singularities

It is instructive to compare the ρ, ρ̂ coordinates with the analogous properties of other

pairs of cross-ratios. As for the defect channel, we already discussed the region and rate

of convergence of the expansion in χ. In this subsection, we concentrate on the bulk OPE

and we study the radius of convergence of the expansion of a bulk block in powers of ξ,

defined in (2.31). We again focus on the case of two identical external scalars.

Up to an overall power ξ∆/2, the bulk channel block has a series in ξ with positive

integer powers, as it can be readily established by inspection of the OPE. The radius of

convergence of such a series equals the distance of the first singularity from the origin. The

easiest way to discover its location is by means of the relation (2.33) to the ρ coordinate.

Since the ρ expansion is non singular in the interior of the Euclidean region, we expect

additional singularities to only come from the change of variables itself. The inverse of

eq. (2.33) is

r2 =
2

ξ

[
1−

√
(1− ζξ) (1− (ζ − 1)ξ)

]
+ 1− 2ζ . (4.16)

The change of variables has branch points at ξ = 1/ζ and ξ = 1/(ζ − 1). Going around

the singularities, r2 is sent to 1/r2. ξ = 1/ζ corresponds to r2 = 1, while ξ = 1/(ζ − 1) lies

outside the Euclidean region, and is mapped to r2 = −1. However, the second singularity

limits the radius of convergence in the Euclidean region as well. More precisely, at fixed

ζ ∈ [0, 1] the ξ expansion converges in the disk

|ξ| < min

(
1

ζ
,

1

1− ζ

)
, (4.17)

which is strictly included in the region of convergence of the bulk OPE, as shown in figure 6.

It is interesting to ask what is the kinematics responsible for the singularity at

ξ = 1/(ζ − 1). The answer lies in the study of the position space Landau diagrams [38] for

correlation functions in the presence of a flat defect. The analysis of the possible singulari-

ties in perturbation theory proceeds as in [38], except that the relevant interaction vertices

are restricted to lie on the defect. This turns into the following condition: singularities can

arise when a point on the defect can exchange positive energy massless particles with a

subset of the external points, in a way that preserves the momentum parallel to the defect.

In the case of a two-point function, this requires the external insertions to be light-like

separated from the same point on the defect. Momentum conservation then requires the

interaction vertex to be aligned with the projection of the external points on the defect.
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b O1

O2

b

Figure 8. One of the kinematics corresponding to eq. (4.18), in particular ξ = 1/(ζ − 1). The

time-like defect is drawn in red. The operators O1 and O2 are light-like separated from the same

point on the defect, as demonstrated by the light rays sketched in green. A massless particle with

positive energy could be emitted by O2, bounce off the defect and be adsorbed by O1.

An example of this kinematics is sketched in figure 8. If these requirements are met, the

cross ratios obey

ξ =
1

2
(ε− cosφ) , ε = ±1 , (4.18)

where cosφ is the cross ratio defined in eq. (2.30) and ε = ±1 if the defect is space-like

or time-like respectively (we use the mostly plus signature, and we keep the notation cos φ

even if the cross-ratio may not be bounded by one). For a space-like defect, eq. (4.18)

has the two solutions ζ = 1 and ξ = 0, whose kinematics are easy to visualize but are

not important here. Instead, ξ = 1/(ζ − 1) is the general solution when the defect is

time-like, and the kinematics is the one depicted in figure 8. It should be noted that, in

this case, −1 ≤ ξ ≤ 0 and ζ ≤ 0. Let us now consider the path to reach this kinematics

from a Euclidean configuration. When the two external operators both lie at t = 0, t

being the time-like coordinate parallel to the defect, the cross-ratios are in the Euclidean

region. If we start separating them along t keeping the angle φ fixed, they become light-

like separated before reaching the configuration (4.18). This amounts in crossing the point

(ξ = 0, ζ = ∞), which is only a branch point for the prefactor ξ∆/2 of the block, and lies

within the radius of convergence of the radial expansion. This justifies the appearance of

this singularity on the first Riemann sheet in the complex ξ plane, and the fact that it

limits the radius of convergence of the ξ expansion.

4.2.1 The self-dual point and the bootstrap

We would like to end this section with some comments related to the bootstrap. In the

case of a boundary CFT, the point that has been used so far for the numerical exploration

is ξ = 1 [12, 13]. The natural generalization for it is (ξ, ζ) = (1, 0), or in terms of the ρ

coordinates,

r2 = r̂ = 3− 2
√

2 ' 0.17 , η = η̂ = 1. (4.19)
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Rξ (red)

Rr (blue)

Δ=10, l=2, r=0.40, η=1

10 20 30 40 50 60
n

0.2

0.4

0.6

0.8

1.0

1/Rξ (red)

1/Rr (blue)

Δ=10, l=2, r=21/2-1, η=1

Figure 9. Comparison of the expansion of the block g∆l of dimension ∆ = 10 and spin l = 2 in

powers of ξ (in red) and r (in blue). The meaning of the labels is as in eq. (4.20). The blue solid

line is constant and equal to 1. The oscillation of Rr and Rξ, especially visible in the latter, follows

from the fact that the two series expansions of the block are alternating. On the right, r is at the

self-dual point, eq. (4.19). We plot R−1
r,ξ because |Rξ| diverges at large n for ξ ≥ 1.

One appealing feature of this value follows from eq. (2.27). This equation is an involution

for the pair of coordinates ρ→ √ρ̂, meaning that it is its own inverse. The point ρ̂ = ρ2 =

3− 2
√

2 is the fixed point of the involution, and corresponds to eq. (4.19). One would like

to motivate the choice (4.19) quantitatively, namely as the point in which the bulk and the

defect OPEs converge at the same rate, but this appears harder as a consequence of the

lack of control over the convergence of the bulk channel OPE.

We would like to stress that the self-dual point (4.19), i.e. (ξ, ζ) = (1, 0), lies at the

boundary of the region of convergence of the ξ-expansion — see eq. (4.17). This makes the

use of the ρ coordinate not only convenient but strictly necessary in the bulk channel, in

the cases where the bulk blocks are not known in closed form. We exemplify this fact by

comparing the convergence of the ξ and r expansions in the case of a block known in closed

form. As we discuss in appendix C, the blocks for two identical scalar primaries with a

codimension 2 defect in 4 dimensions belong to this category. We simply expand the block

in powers of ξ and r at fixed η, and we define the two ratios

Rr(n) =
1

g∆l

(
Series expansion of g∆l up to order r∆+n

)
,

Rξ(n) =
1

g∆l

(
Series expansion of g∆l up to order ξ∆/2+n

)
.

(4.20)

We suppressed the dependence on η. We show an example in figure 9, for η = 1 (ζ = 0)

and two values of r: r = 0.4, which corresponds to ξ = 0.91, and r =
√

2 − 1 (ξ = 1), i.e.

the self-dual point (4.19). It is evident in figure 9 that the ξ-expansion does not converge

to the value of the block at the self-dual point. Furthermore, when r = 0.4 and both

series converge, the expansion in r clearly shows a faster rate of convergence: a good

approximation of the block is already obtained with the inclusion of the descendants up

to level ∼ 10 when ∆ = 10. For instance, the truncation to order r∆+12 differs from the

exact block by less than 0.7%.
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5 Conclusions

In this work, we introduced the radial coordinates (r, η) and (r̂, η̂) for the study of a two-

point function of local operators in the presence of a conformal defect. The new coordinates

have numerous advantages which, much as in the case of the radial coordinates for the four-

point function [25], largely follow from their clean geometric interpretation. In particular,

the expansion of the bulk (defect) conformal blocks in powers of r (r̂) is closely related to

the Euclidean OPE, and is therefore easily organized. This is of particular importance for

the computation of conformal blocks exchanged by operators with spin [30]. Furthermore,

the region of convergence of the bulk (defect) OPEs coincide with the region of convergence

of the expansion of the two-point function in powers of r (r̂). This signals that the latter

expansions are especially well behaved, a fact that we have quantified in the defect channel

by showing that the rate of convergence is exponential. While we did not estimate the rate

of convergence of the bulk channel (r) expansion, we compared it with the expansion in the

cross ratio ξ — see eq. (2.31) — which is customarily used in the defect CFT literature.

We pointed out that the latter has a smaller radius of convergence, which in particular

makes it unsuitable for the numerical bootstrap applications. Finally, since the radial

coordinates give a strong geometric intuition on the position of the singularities of the

two-point function both in Euclidean and Lorentzian signatures, we expect that they may

play a role in the development of analytic approaches to the defect conformal bootstrap

as well.
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A Normalizations

Here we report our choice of normalizations of the CFT data, through their appearance in

the correlation functions. All the operators are canonically normalized, except the defect

primaries with non vanishing transverse spin s, whose normalization is in eq. (A.5).

It is now standard to use the technology of [28] to write correlation functions of traceless

symmetric operators. To each operator Oi(Pi, Zi) is associated a polarization vector Zi
which contracts its indices. Zi is orthogonal to Pi, i.e. Zi ·Pi = 0, and null, i.e. Zi ·Zi = 0.

The projection of Zi on the Poincaré section (2.2) defines polarization vectors zi in physical

space according to:

Z = (z · x, zµ,−z · x). (A.1)

As for the correlation functions of local operators without defects, for the purposes

of this paper we need the spin 0–spin 0–spin l three-point function, which are fixed by

conformal invariance up to a coefficient:

〈O1(P1)O2(P2)O3(P3, Z3)〉 = c123
(V3,12)l

(P12)α123(P13)α132(P23)α231
, (A.2)

where we defined Pij ≡ (−2Pi · Pj) and αijk ≡ (∆i + ∆j −∆k)/2 and

Vi,jk =
(Pi · Pj)(Zi · Pk)− (Pi · Pk)(Zi · Pj)√

−2(Pi · Pj)(Pj · Pk)(Pk · Pi)
. (A.3)

Turning to the correlation functions in the presence of a defect, the one-point functions

of symmetric and traceless bulk primaries with even spin l are [18]

〈O(P1, Z1)〉D = aO
Ql

(P1 ◦P1)
∆
2

, Ql =

(
(P ◦Z)2

(P ◦P )
− Z ◦Z

)l/2
. (A.4)

The two point functions of defect operators of transverse spin s and parallel spin l̂ = 0 are

normalized as follows:

〈Ô(P1,W1)Ô(P2,W2)〉D =
(W1◦W2)s

(−2P1 •P2)
∆̂
2

. (A.5)

Here Wi is a polarization vector that contracts the transverse spin indices of Ôi. Finally,

the two point function of a scalar bulk primary and a defect primary with transverse spin

s and vanishing parallel spin is given by

〈O(P1)Ô(P2,W2)〉D = bOÔ
(Q1

BD)s

(−2P1 •P2)∆̂(P1 ◦P1)
∆−∆̂

2

, Q1
BD ≡

P1◦W2

(P1◦P1)1/2
. (A.6)

B Details on the bulk channel scalar conformal block

B.1 Casimir equation

In section 3 we explained that the conformal partial waves are eigenfunctions of the con-

formal Casimir. Using (3.3), it is not hard to rewrite the Casimir equation (3.2) as a
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differential equation for the conformal block g∆,l,

1

2

(
r4 − 1

) (
f2c∆,l + 4∆2

12r
2
(

2η2
(
r4 + 1

)
−
(
r2 + 1

)2))
g∆,l

− f
(
r4 − 1

) (
fd
(
η2 − 1

)
− 4η2r2

(
2η2 + q − 3

)
+ (q − 1)

(
r2 + 1

)2)
∂η2g∆,l

− f
(
fd
(
r2−1

)2−16η2r2
(
(q−1)r2−1

)
+ 2

(
r2+1

)2 (
2(q−2)r2+r4−1

))
r2∂r2g∆,l

− 2f2η2
(
η2 − 1

) (
r4 − 1

)
∂2
η2g∆,l − 2f2

(
r4 − 1

)
r4∂2

r2g∆,l = 0 , (B.1)

where we defined the auxiliary function f = (r2 + 1)2 − 4η2r2.

In the following solve eq. (B.1) at leading order when r is small and at leading order

when ∆ is large. In both cases it is useful to define a new function h∆,l, obtained by

stripping out a factor (4r)∆ in front of the conformal blocks — see also eq. (3.15):

h∆,l(r, η) ≡ (4r)−∆g∆,l(r, η) . (B.2)

At leading order in r, (B.1) becomes

l(d+ l− 2)h∆,l(0, η)− 2
(
d η2 − p− 1

)
∂η2h∆,l(0, η)− 4

(
η2 − 1

)
η2∂2

η2h∆,l(0, η) = 0 . (B.3)

The functions (3.12), with j = l, provide a solution to this equation compatible with the

OPE limit, as explained in subsection 3.1.1.

Similarly, at leading order at large ∆ the Casimir equation reduces to(
d
(
f − fr2

)
− 2fq − 4

(
η2 − 1

) (
r2 + 1

)2)
h∞l − 2f

(
r4 − 1

)
∂r2h∞l = 0 . (B.4)

This first order differential equation can be solved explicitly and the boundary condition

is again provided by the leading OPE limit (3.15). The full result is

h∞l(r, η) =

(
1− r2

)1− q
2
(
r2 + 1

) q−d
2√

(r2 + 1)2 − 4η2r2

Cl(η) . (B.5)

B.2 The Zamolodchikov recurrence relation

In this section we explain how to compute all the ingredients for the Zamolodchikov recur-

rence relations presented in section 3.1.3. Most of the ingredients were already computed

in [34], so we will briefly review how the computation was done. Finally we explain how

to compute the new ingredient M
(L)
A defined in (3.22).

For generic values of p and q, only bulk operators transforming in symmetric and

traceless representations of even spin l are allowed to appear in the OPE of two bulk scalar

operators. For symmetric and traceless representations, all the null states were found

explicitly in [34]. In the following we review how to generate them. Consider a traceless

and symmetric primary state with spin l:

|∆, l ; z〉 ≡ zµ1 . . . zµlOµ1...µl(0)|0〉 ≡ O(z, 0)|0〉 . (B.6)
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Following the notation of [34], all the primary descendant states can be written as a dif-

ferential operator DA acting on the primary state:

|∆A, lA ; z〉 = DA|∆, l ; z〉 (B.7)

where A = T, n with T = I, II, III and n = 1, 2 . . . .

DI,n|∆, l ; z〉 ≡ (z · P )n|∆, l ; z〉 ,

DII,n|∆, l ; z〉 ≡
(Dz · P )n

(2− d/2− l)n(−l)n
|∆, l ; z〉 ,

DIII,n|∆, l ; z〉 ≡ V0 · V1 · · · Vn−1|∆, l ; z〉 ,

(B.8)

where

Vj ≡ P 2 − 2
(P · z)(P ·Dz)

(d/2 + l + j − 1)(d/2 + l − j − 2)
. (B.9)

The state |∆A, lA ; z〉 becomes primary when ∆ = ∆?
A defined by

∆?
I,n ≡ 1− l − n n = 1, 2, . . . ,

∆?
II,n ≡ l + d− 1− n n = 1, 2, . . . , l ,

∆?
III,n ≡

d

2
− n n = 1, 2, . . . .

(B.10)

The quantity QA is defined as the inverse of the norm of the states (B.8) at the pole

∆ = ∆?
A

〈OAOA〉−1 =
QA

∆−∆?
A

+O((∆−∆?
A)0) . (B.11)

It was computed in [34]:

QI,n = − n

2n(n!)2
,

QII,n = − n(−l)n
(−2)n(n!)2(d+ l − n− 2)n

(d/2 + l − n− 1)

(d/2 + l − 1)
,

QIII,n = − n

(−16)n(n!)2(d/2− n− 1)2n

(d/2 + l − n− 1)

(d/2 + l + n− 1)
.

(B.12)

In [34] also M
(R)
A was obtained, which appears as a normalization coefficient of the three

point function with a primary descendant operator 〈O1O2OA〉 = M
(R)
A 〈O1O2O〉. This

quantity can be obtained by performing the following computation

DA
(−x · z)l

(x2)
∆+∆12+l

2

= M
(R)
A

(−x · z)lA

(x2)
∆A+∆12+lA

2

, (B.13)

to find

M
(R)
I,n = (2i)n

(
∆ + ∆12 + l

2

)
n

,

M
(R)
II,n = in

(d+ l − n− 2)n
(d/2 + l − n− 1)n

(
∆ + ∆12 + 2− d− l

2

)
n

,

M
(R)
III,n = (−4)n

(d/2− n− 1)l
(d/2 + n− 1)l

(
∆ + ∆12 + 2− d− l

2

)
n

(
l + ∆ + ∆12

2

)
n

.

(B.14)

In the computation of the residue RA in eq. (3.21) M
(R)
A should be evaluated at ∆ = ∆?

A.
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Similar manipulations lead to the results for M
(L)
A . We consider the one point func-

tion (A.4) projected onto the Poincaré section:

〈O∆ l(x, z)〉D ≡ aO

(
(x ◦ z)2 − (z ◦ z)(x ◦x)

)
l
2

(x ◦x)
∆+l

2

, (B.15)

where ◦ is the scalar product for a flat defect defined in eq. (2.10). M
(L)
A is defined by the

equation

DA〈O∆?
A l

(x, z)〉D = M
(L)
A 〈O∆A lA(x, z)〉D . (B.16)

The result is

M
(L)
I,n = ((n− 1)!!)2 ,

M
(L)
II,n = ((n− 1)!!)2

(−d−l+4
2

)
n
2

(
−l−q+3

2

)
n
2

(
−d−l+q+1

2

)
n
2(

1−l
2

)
n
2

(−d−2l+4
2

)
n

,

M
(L)
III,n = (−4)n

(
d/2−q−n+2

2

)
n

(
d/2+l−n

2

)
n

(
d/2−n−1

2

)
n(

d/2−n+l−1
2

)
n

.

(B.17)

C The scalar bulk blocks in d = 4, q = 2

The conformal blocks for two identical external primaries with a codimension 2 defect are

the same as the blocks of an ordinary four-point function of pairwise identical operators [18].

In particular, the bulk channel blocks for external scalars are known exaclty for a two-

dimensional surface defect in four dimensions. They are most conveniently written in

terms of auxiliary variables z, z̄:

g∆l(r, η) ∝ zz̄

z − z̄ (k∆+l(z)k∆−l−2(z̄)− z ↔ z̄) , kβ(z) = zβ/22F1(β/2, β/2, β, z).

(C.1)

We do not pay attention to the normalization in this appendix. The (z, z̄) variables obey

zz̄ = −ξe−iφ, (1− z)(1− z̄) = e−2iφ. (C.2)

This translates to

z =
ρ̂− 1

ρ̂
, z̄ = 1− ¯̂ρ , (C.3)

or in terms of the bulk-channel coordinates,

z = − 4ρ

(1− ρ)2
, z̄ =

4ρ̄

(1 + ρ̄)2
. (C.4)

The last relation is especially simple when re-expressed in terms of the ρ-coordinate for the

four-point function, which we rename ρ4p:

ρ4p = −ρ , ρ̄4p = ρ̄ . (C.5)
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Figure 10. The geometric equivalence of a codimension two defect to a pair of local operators. In

Minkowsky space, (ρ, ρ̄) are independent real coordinates. The locus of the defect on the left —

in red — is the intersection of the light-cones of the two time-like separated points at the top and

bottom of the diamond on the right.

The geometric interpretation of equation (C.5) is simple, and depicted in figure 10. In figure

on the right we show the four-point function 〈O(x1)O(x2)O′(x3)O′(x4)〉 in the radial frame

in Lorentzian signature. The conformal transformations that leave the positions of O′(x3)

and O′(x4) invariant also leave invariant their future and past lightcones. The intersection

of the lightcones is a codimension 2 sphere, so we conclude that a pair of points and a

sphere have the same stabilizer.

The change of variables (C.2) was first found in [18], and then given a geometric inter-

pretation in [22]. Later, the correspondence between pairs of local operators and a class of

codimension two surfaces re-emerged in [39, 40]. We stress that this is a kinematic corre-

spondence rather than a duality. In fact the reasoning offers no evidence that correlation

functions should agree.

That said, the availability of exactly known conformal blocks is welcome. For instance,

from the closed expression (C.1) we can check that the blocks are regular in the D or D̂
domains in eqs. (2.21) and (2.26). In particular, the cuts of the hypergeometric functions

in eq. (C.1) are mapped to the circles |ρ| = 1 and |ρ̄| = 1, or equivalently to the negative

real axes of ρ̂ and ¯̂ρ. More precisely, the line ρ̂ = ¯̂ρ ∈ [−1, 0] is mapped to z̄ = z/(z − 1)

with z ∈ [2,∞). Hence, the bulk channel conformal block is discontinuous when crossing

the negative real axis in the ρ̂ plane.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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