Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hybrid seesaw leptogenesis and TeV singlets
 
research article

Hybrid seesaw leptogenesis and TeV singlets

Agashe, Kaustubh
•
Du, Peizhi
•
Ekhterachian, Majid
Show more
October 10, 2018
Physics Letters B

The appealing feature of inverse seesaw models is that the Standard Model (SM) neutrino mass emerges from the exchange of TeV scale singlets with sizable Yukawa couplings, which can be tested at colliders. However, the tiny Majorana mass splitting between TeV singlets, introduced to accommodate small neutrino masses, is left unexplained. Moreover, we argue that these models suffer from a structural limitation that prevents a successful leptogenesis if one insists on having unsuppressed Yukawa couplings and TeV scale singlets. In this work we propose a hybrid seesaw model, where we replace the mass splitting with a coupling to a high scale seesaw module including a TeV scalar. We show that this structure achieves the goal of filling both the above gaps with couplings of order unity. The necessary structure automatically arises embedding the seesaw mechanism in composite Higgs models, but may also be enforced by new gauge symmetries in a weakly-coupled theory. Our hybrid seesaw models have distinguishing features compared to the standard high scale type-I seesaw and inverse seesaw. Firstly, they have much richer phenomenology. Indeed, they generally predict new TeV scale physics (including scalars) potentially accessible at present and future colliders, whereas weakly-coupled versions may also have cosmological signature due to the presence of a light Nambu-Goldstone boson coupled to neutrinos. Secondly, our scenario features an interesting interplay between high scale and TeV scale physics in leptogenesis and enlarges the range of allowed high scale singlet masses beyond the usual similar to 10(9)-10(15) GeV, without large hierarchies in the Yukawa couplings nor small mass splitting among the singlets. (C) 2018 The Authors. Published by Elsevier B.V.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0370269318306981-main.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

606.02 KB

Format

Adobe PDF

Checksum (MD5)

10ae79b12c4348e0e389fc194757eea8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés