Abstract

This work explains the synthesis of an efficient organic hole transporting material based on 4,4'-(5,5'-(thiazolo [5,4-d] thiazole-2,5-diyl) bis(furan-5,2-diyl)) bis(N, N-diphenylaniline) (TP-FTzF-TP) and the replacement of poly (3,4-ethylenedio-xythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer by simple O-2 plasma treatment for perovskite solar cells (PSCs). The introduction of furan spacer groups significantly tuned the absorption and the electrochemical properties of the organic hole transporting material. The ITO(O-2 plasma)/TP-FTzF-TP/CH3NH3PbI3/PC61BM/Au configuration based PSC exhibited a high power conversion efficiency (PCE) of similar to 16.4% which showed a momentous improvement as compared to PCEs of similar to 11.6% and similar to 10.5% achieved by ITO/PEDOT: PSS/TP-FTzF-TP/CH3NH3PbI3/PC61BM/Au and ITO/TP-FTzF-TP/CH3NH3PbI3/PC61BM/Au devices, respectively. The superior performances of PSC were accredited to fast hole injection from the valence band of CH3NH3PbI3 into the suitable HOMO and a high hole mobility of TP-FTzF-TP HTM.

Details

Actions