Files

Abstract

The performance of base-isolated steel structures having special moment frames is assessed. The archetypes, which are designed per ASCE/SEI 7-2016, are simulated in the Finite Element (FE) computational platform, OpenSees. Adopting nonlinear dynamic analyses using far-field ground motions, the performance of Drift-Sensitive Structural Components (DS-SC), and Drift-/Acceleration-Sensitive Non-Structural Components (DS/AS NSC) at slight, moderate, extensive, and collapse damage states are investigated. The effects of structural height, effective transformed period (Teff), response modification coefficient (RI), and isolation type on the performance of 26 archetypes mounted on Lead Rubber Bearings (LRBs) and Triple Concave Friction Pendulums (TCFPs) are evaluated. Computing 50-year probability of exceedance using the fragility curves and seismic hazard curves of the site, increasing Teff reduces the role of RI in the structural performance; variations in the height, as well as RI, do not affect the risk of damages to the AS-NSC; the risk of collapse is not sensitive to the variations of Teff. The TCFP systems represent superior performance than LRB systems in lower intensities. For longer periods and taller structures, the isolation type has less effect on the performance of NSC. Finally, the archetypes have less than 1% risk of collapse in 50 years; nevertheless, high-rise structures with R-I = 2.0 have more than 10% probability of collapse given the maximum earthquake.

Details

PDF