Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. SPICE Modeling of Photoelectric Effects in Silicon With Generalized Devices
 
research article

SPICE Modeling of Photoelectric Effects in Silicon With Generalized Devices

Rossi, Chiara  
•
Buccella, Pietro  
•
Stefanucci, Camillo  
Show more
January 1, 2018
Ieee Journal Of The Electron Devices Society

Modeling photoelectric effects in semiconductors with electrical simulators is demonstrated in typical 1-D and 2-D architectures. The concept is based on a coarse meshing of the semiconductor with the so-called generalized lumped devices, where equivalent voltages and currents are used in place of minority carrier excess concentrations and minority carrier gradients, respectively, and where the light-induced excess carrier concentration in silicon is introduced by means of internal current sources. Generation, propagation, and collection of these minority carriers are analyzed for different structures which can behave as photosensors or solar cells. Both static and transient operations are found in good agreement with TCAD numerical simulations while using the same physical and geometrical parameters.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ielx7-6245494-8232486-08320293.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.86 MB

Format

Adobe PDF

Checksum (MD5)

184010db407c56ab98e1cd8b131fb52c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés