Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High-dimensional peaks-over-threshold inference
 
Loading...
Thumbnail Image
research article

High-dimensional peaks-over-threshold inference

de Fondeville, R.  
•
Davison, A. C.  
September 1, 2018
Biometrika

Max-stable processes are increasingly widely used for modelling complex extreme events, but existing fitting methods are computationally demanding, limiting applications to a few dozen variables. r-Pareto processes are mathematically simpler and have the potential advantage of incorporating all relevant extreme events, by generalizing the notion of a univariate exceedance. In this paper we investigate the use of proper scoring rules for high-dimensional peaks-overthreshold inference, focusing on extreme-value processes associated with log-Gaussian random functions, and compare gradient score estimators with the spectral and censored likelihood estimators for regularly varying distributions with normalized marginals, using data with several hundred locations. When simulating from the true model, the spectral estimator performs best, closely followed by the gradient score estimator, but censored likelihood estimation performs better with simulations from the domain of attraction, though it is outperformed by the gradient score in cases of weak extremal dependence. We illustrate the potential and flexibility of our ideas by modelling extreme rainfall on a grid with 3600 locations, based on exceedances for locally intense and for spatially accumulated rainfall, and discuss diagnostics of model fit. The differences between the two fitted models highlight how the definition of rare events affects the estimated dependence structure.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

BIOMET_105_3_575.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

Copyright

Size

800.22 KB

Format

Adobe PDF

Checksum (MD5)

00e766d39a5322e2fd17c6836daef9c7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés