We present and experimentally validate in a real-scale medium voltage (MV) grid a synchrophasor network that exploits the availability of a public 4G LTE communication infrastructure. An 18 buses, 10 kV feeder located in Huissen, The Netherlands, has been equipped with 10 Phasor Measurement Units (PMUs) connected to the MV grid by means of dedicated voltage and current sensors. The PMUs stream synchrophasor data through a public 4G LTE network via an information-centric networking-based middleware, named C-DAX. The measurements are received and time-aligned at a phasor data concentrator and fed to a real-time state estimation application. The paper presents the various field-trial components and validates the feasibility of exploiting the 4G LTE technology for PMU-based applications. Specifically we assess the performance of the adopted wireless telecommunication infrastructure with and without the C-DAX middleware, as well as the accuracy of the real-time state estimation process.