A mobile measurement platform and an image processing procedure for high-resolution aerial thermal imagery of lake surface water temperatures

A mobile platform for carrying out Lake Surface Water Temperature (LSWT) thermography with O(1 m) pixel resolution is presented. It consists of (i) a small balloon carrying a thermal and RGB imagery package tethered to a winch on a boat, and (ii) an autonomous catamaran that measures in situ surface/near surface temperatures, both communicating with the boat in real time. The image processing procedure includes non-uniformity correction (spatial noise) by a pixelwise two-point linear correction; drift correction (temporal noise) by probability density function matching in regions of overlap between sequential images; and creation of composite thermal images by a feature matching-based algorithm. A high overlapping field of view (~95%) is essential for optimizing image fusion and noise reduction of lake aerial thermography to resolve the small LSWT gradients. Catamaran-measured in situ temperatures were used for the radiometric calibration. The resultant high-resolution meso-scale LSWT maps show various cold-warm patches and streak-like structures with a temperature contrast of > 2°C over areas covering less than a typical satellite pixel (1 km2). They were verified by catamaran measurements. The results demonstrate the capability of this mobile platform system and the proposed image processing procedure to determine meso-scale LSWT patterns with unprecedented detail.


Advisor(s):
Barry, David Andrew
Presented at:
International Association for Great Lakes Research & European Large Lakes Symposium (ELLS-IAGLR 2018), Evian, France, 23-28 September 2018
Year:
2018
Keywords:
Additional link:
Laboratories:




 Record created 2018-10-23, last modified 2019-12-05


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)