Abstract

Limited observational data exists on the physical interactions between volcanic ash particles and water vapor; yet it is thought that these interactions can strongly impact the microphysical evolution of ash, with implications for its atmospheric lifetime and transport, as well as formation of water and ice clouds. In this study, we investigate for the first time, the hygroscopic properties of ultra-fine volcanic ash (<125 m diameter) from the eruptions of Mt. St. Helens in 1980, El Chichón in 1982, Tungurahua in 2006, Chaitén in 2008, Mt. Redoubt in 2009, and Eyjafjallajkull in 2010. The hygroscopicity of the ash particles is quantified by their ability to uptake water and nucleate into cloud drops under controlled levels of water vapor supersaturation. Evidence presented strongly suggests that ash uptakes water efficiently via adsorption and a simple parameterization of ash hygroscopicity is developed for use in ash plume and atmospheric models. Copyright 2011 by the American Geophysical Union.

Details

Actions