Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. CCN activity, variability and influence on droplet formation during the HygrA-Cd Campaign in Athens
 
Loading...
Thumbnail Image
research article

CCN activity, variability and influence on droplet formation during the HygrA-Cd Campaign in Athens

Bougiatioti, A.
•
Argyrouli, A.
•
Solomos, S.
Show more
2017
Atmosphere

Measurements of cloud condensation nuclei (CCN) concentrations (cm-3) at five levels of supersaturation between 0.2-1%, together with remote sensing profiling and aerosol size distributions, were performed at an urban background site of Athens during the Hygroscopic Aerosols to Cloud Droplets (HygrA-CD) campaign. The site is affected by local emissions and long-range transport, as portrayed by the aerosol size, hygroscopicity and mixing state. Application of a state-of-the-art droplet parameterization is used to link the observed size distribution measurements, bulk composition, and modeled boundary layer dynamics with potential supersaturation, droplet number, and sensitivity of these parameters for clouds forming above the site. The sensitivity is then used to understand the source of potential droplet number variability. We find that the importance of aerosol particle concentration levels associated with the background increases as vertical velocities increase. The updraft velocity variability was found to contribute 58-90% (68.6% on average) to the variance of the cloud droplet number, followed by the variance in aerosol number (6-32%, average 23.2%). Therefore, although local sources may strongly modulate CCN concentrations, their impact on droplet number is limited by the atmospheric dynamics expressed by the updraft velocity regime. © 2017 by the authors.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2073-4433-8-6-108.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

CC BY

Size

1.74 MB

Format

Adobe PDF

Checksum (MD5)

b26f8d13a2b959d2a524246d76dded74

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés