Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Exploring Data Partitions for What-if Analysis
 
research report

Exploring Data Partitions for What-if Analysis

Nguyen, Thanh Tam  
•
Nguyen, Quoc Viet Hung
•
Zheng, Kai
Show more
2018

What-if analysis is a data-intensive exploration to inspect how changes in a set of input parameters of a model influence some outcomes. It is motivated by a user trying to understand the sensitivity of a model to a certain parameter in order to reach a set of goals that are defined over the outcomes. To avoid an exploration of all possible combinations of parameter values, efficient what-if analysis calls for a partitioning of parameter values into data ranges and a unified representation of the obtained outcomes per range. Traditional techniques to capture data ranges, such as histograms, are limited to one outcome dimension. Yet, in practice, what-if analysis often involves conflicting goals that are defined over different dimensions of the outcome. Working on each of those goals independently cannot capture the inherent trade-off between them. In this paper, we propose techniques to recommend data ranges for what-if analysis, which capture not only data regularities, but also the trade-off between conflicting goals. Specifically, we formulate a parametric data partitioning problem and propose a method to find an optimal solution for it. Targeting scalability to large datasets, we further provide a heuristic solution to this problem. By theoretical and empirical analyses, we establish performance guarantees in terms of runtime and result quality.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

whatif_is.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

2.29 MB

Format

Adobe PDF

Checksum (MD5)

0db14c3fa9d23bc68a0bdd4cb771f6eb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés