Distributed forward Brillouin sensor based on local light phase recovery

The distributed fibre sensing technology based on backward stimulated Brillouin scattering (BSBS) is experiencing a rapid development. However, all reported implementations of distributed Brillouin fibre sensors until today are restricted to detecting physical parameters inside the fibre core. On the contrary, forward stimulated Brillouin scattering (FSBS), due to its resonating transverse acoustic waves, is being studied recently to facilitate innovative detections in the fibre surroundings, opening sensing domains that are impossible with BSBS. Nevertheless, due to the co-propagating behaviour of the pump and scattered lights, it is a challenge to position-resolve FSBS information along a fibre. Here we show a distributed FSBS analysis based on recovering the FSBS induced phase change of the propagating light waves. A spatial resolution of 15 m is achieved over a length of 730 m and the local acoustic impedances of water and ethanol in a 30 m-long uncoated fibre segment are measured, agreeing well with the standard values.

Published in:
Nature Communications, 9, 1, 2990
Jul 31 2018

Note: The status of this file is: Anyone

 Record created 2018-08-01, last modified 2020-10-28

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)