Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Efficient Multi-dimensional Diracs Estimation with Linear Sample Complexity
 
research article

Efficient Multi-dimensional Diracs Estimation with Linear Sample Complexity

Pan, Hanjie  
•
Blu, Thierry  
•
Vetterli, Martin  
July 20, 2018
IEEE Transactions on Signal Processing

Estimating Diracs in continuous two or higher dimensions is a fundamental problem in imaging. Previous approaches extended one dimensional methods, like the ones based on finite rate of innovation (FRI) sampling, in a separable manner, e.g., along the horizontal and vertical dimensions separately in 2D. The separate estimation leads to a sample complexity of O(K^D) for K Diracs in D dimensions, despite that the total degrees of freedom only increase linearly with respect to D. We propose a new method that enforces the continuous-domain sparsity constraints simultaneously along all dimensions, leading to a reconstruction algorithm with linear sample complexity O(K), or a gain of O(K^{D-1}) over previous FRI-based methods. The multi-dimensional Dirac locations are subsequently determined by the intersections of hypersurfaces (e.g., curves in 2D), which can be computed algebraically from the common roots of polynomials. We first demonstrate the performance of the new multi-dimensional algorithm on simulated data: multi-dimensional Dirac location retrieval under noisy measurements. Then we show results on real data: radio astronomy point source reconstruction (from LOFAR telescope measurements) and the direction of arrival estimation of acoustic signals (using Pyramic microphone arrays).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TSP2858213.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

embargo

Embargo End Date

2018-08-06

License Condition

CC BY

Size

1.88 MB

Format

Adobe PDF

Checksum (MD5)

0d870141091b661da809e5b68104f2aa

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés