Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Inhalation intake fraction of particulate matter from localized indoor emissions
 
research article

Inhalation intake fraction of particulate matter from localized indoor emissions

Licina, Dusan
•
Tian, Yilin
•
Nazaroff, William W.
2017
Building and Environment

Elevated exposure to airborne particulate matter is linked to deleterious health and well-being outcomes. Exposure assessment can be improved through enhanced understanding of source-receptor relationships, for example as expressed in the inhalation intake fraction metric. This study provides new knowledge about how inhalation intake of airborne particles varies with spatially varying indoor emissions. In a controlled environmental chamber with low background particle levels, we monitored the time- and size-resolved particle concentrations at multiple locations including the subject's breathing zone. We investigated two types of particle emissions: (i) controlled releases from several specific indoor locations; and (ii) natural release from skin and clothing for a range of simulated occupant activities. Findings show that particles released proximate to the human envelope caused a total inhalation intake fraction of 7–10 per thousand, which was 1.5–16 × higher than the intake fraction for other indoor release locations. These outcomes reflect the influence of emissions-receptor proximity combined with the efficient transport of particles by means of the thermal plume to the breathing zone. The results show that the well-mixed representation of an indoor environment could underestimate the inhalation intake by 40–90% for various localized indoor emissions, and by up to 3 × for particles emitted from the human envelope. The post-release exposure period contributed substantially to total inhalation intake. For particles released naturally from the human envelope, inhalation intake fractions varied with activity type and were higher for a subject when seated rather than walking.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.buildenv.2017.06.037
Author(s)
Licina, Dusan
Tian, Yilin
Nazaroff, William W.
Date Issued

2017

Published in
Building and Environment
Volume

123

Start page

14

End page

22

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
HOBEL  
Available on Infoscience
July 3, 2018
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/147088
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés