Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Solving quantified linear arithmetic by counterexample-guided instantiation
 
research article

Solving quantified linear arithmetic by counterexample-guided instantiation

Reynolds, Andrew Joseph  
•
King, Tim
•
Kuncak, Viktor  
August 3, 2017
Formal Methods in System Design

This paper presents a framework to derive instantiation-based decision procedures for satisfiability of quantified formulas in first-order theories, including its correctness, implementation, and evaluation. Using this framework we derive decision procedures for linear real arithmetic (LRA) and linear integer arithmetic (LIA) formulas with one quantifier alternation. We discuss extensions of these techniques for handling mixed real and integer arithmetic, and to formulas with arbitrary quantifier alternations. For the latter, we use a novel strategy that handles quantified formulas that are not in prenex normal form, which has advantages with respect to existing approaches. All of these techniques can be integrated within the solving architecture used by typical SMT solvers. Experimental results on standardized benchmarks from model checking, static analysis, and synthesis show that our implementation in the SMT solver CVC4 outperforms existing tools for quantified linear arithmetic.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ReynoldsETAL17SolvingQuantified.pdf

Access type

openaccess

Size

431.91 KB

Format

Adobe PDF

Checksum (MD5)

c41ee0a6747b9df1b774c14bd0dd33f9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés