Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers
 
research article

Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers

Yang, Zhisheng  
•
Li, Zonglei
•
Zaslawski, Simon
Show more
June 13, 2018
Optics Express

The performance of unipolar unicolor coded Brillouin optical time-domain analysis (BOTDA) is evaluated based on both Simplex and Golay codes. Four major detrimental factors that limit the system performance, including decoded-gain trace distortion, coding pulse power non-uniformity, polarization pulling and higher-order non-local effects, are thoroughly investigated. Through theoretical analysis and an experimental validations, solutions and optimal design conditions for unipolar unicolor coded BOTDA are clearly established. First, a logarithmic normalization approach is proposed to resolve the linear accumulated Brillouin amplification without distortion. Then it is found out that Simplex codes are more robust to pulse power non-uniformity compared to Golay codes; whilst the use of a polarization scrambler must be preferred in comparison to a polarization switch to mitigate uncompensated fading induced by polarization pulling in the decoded traces. These optimal conditions enables the sensing performance only limited by higher-order non-local effects. To secure systematic errors below 1.3 MHz on the Brillouin frequency estimation, while simultaneously reaching the maximum signal-to-noise ratio (SNR), a mathematical model is established to trade-off the key parameters in the design, i.e., the single-pulse Brillouin amplification, code length and probe power. It turns out that the optimal SNR performance depends in inverse proportion on the value of maximum single-pulse Brillouin amplification, which is ultimately determined by the spatial resolution. The analysis here presented is expected to serve as a quantitative guideline to design a distortion-free coded BOTDA system operating at maximum SNR.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

oe-26-13-16505.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.92 MB

Format

Adobe PDF

Checksum (MD5)

822ae593073bdb419a6b161b46a28009

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés