Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Adaptive Receiver Design for High Speed Optical Communication
 
doctoral thesis

Adaptive Receiver Design for High Speed Optical Communication

Ozkaya, Ilter  
2018

Conventional input/output (IO) links consume power, independent of changes
in the bandwidth demand by the system they are deployed in. As the system is
designed to satisfy the peak bandwidth demand, most of the time the IO links
are idle but still consuming power. In big data centers, the overall utilization
ratio of IO links is less than 10%, corresponding to a large amount of energy
wasted for idle operation.
This work demonstrates a 60 Gb/s high sensitivity non-return-to-zero (NRZ)
optical receiver in 14 nm FinFET technology with less than 7 ns power-on time.
The power on time includes the data detection, analog bias settling, photo-diode
DC current cancellation, and phase locking by the clock and data recovery circuit
(CDR). The receiver autonomously detects the data demand on the link
via a proposed link protocol and does not require any external enable or disable
signals. The proposed link protocol is designed to minimize the off-state power
consumption and power-on time of the link.
In order to achieve high data-rate and high-sensitivity while maintaining
the power budget, a 1-tap decision feedback equalization method is applied in
digital domain. The sensitivity is measured to be -8 dBm, -11 dBm, and -13 dBm
OMA (optical modulation amplitude) at 60 Gb/s, 48 Gb/s, and 32 Gb/s data rates,
respectively. The energy efficiency in always-on mode is around 2.2 pJ/bit for all
data-rates with the help of supply and bias scaling.
The receiver incorporates a phase interpolator based clock-and-data recovery
circuit with approximately 80 MHz jitter-tolerance corner frequency, thanks to
the low-latency full custom CDR logic design.
This work demonstrates the fastest ever reported CMOS optical receiver and
runs almost at twice the data-rate of the state-of-the-art CMOS optical receiver
by the time of the publication. The data-rate is comparable to BiCMOS optical
receivers but at a fraction of the power consumption.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH8684.pdf

Access type

openaccess

Size

14.12 MB

Format

Adobe PDF

Checksum (MD5)

9903c22040b7b31ce4c5c4214a4cc773

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés