A Passivity-Based Approach to Voltage Stabilization in DC Microgrids with ZIP loads

Pulkit Nahata\(^a\), Raffaele Soloperto\(^a\), Michele Tucci\(^b\), Andrea Martinelli\(^c\), Giancarlo Ferrari-Trecate\(^a\)

\(^a\)Automatic Control Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
\(^b\)Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Italy
\(^c\)Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

Abstract

We consider the application of passivity theory to the problem of voltage stabilization in DC microgrids, which are composed of distributed generation units, dynamic RLC lines, and nonlinear ZIP (constant impedance, constant current, and constant power) loads. To this aim, we first provide a novel result on stable interconnection of multiple passive systems and later consider its applications to microgrids. More specifically, we consider decentralized multivariable PI controllers proposed in [27], and show that they passivate the generation units and the loads under certain conditions. To prove voltage stability in the closed-loop microgrid, we exploit properties of interconnection, passivity of individual components, and LaSalle’s invariance theorem. Moreover, we provide explicit inequalities on control gains to design these stabilizing controllers. Control synthesis requires only the knowledge of local parameters and is always feasible allowing removal and addition of DGUs in a plug-n-play fashion. Theoretical results are backed up by simulations in PSCAD.

Key words: Passivity-based control, Decentralized control, DC microgrids, Voltage stability, Nonlinear stability analysis.

1 Introduction

Passivity theory is one of the most powerful tools for the analysis of complex systems. It provides a framework for designing control actions based on considerations related to the energy of the system, both in the linear and nonlinear cases. Furthermore, passivity theory has strong relations with Lyapunov stability [20]. We refer the reader to [24, 14], and the references therein, for a detailed discussion about stabilization of nonlinear systems using passivity-based approaches. For the analysis of large-scale systems, passivity provides a compositional framework, that is, passivity of a system can be shown from the passivity of its components and the way they are interconnected.

A classic result is that the feedback or parallel interconnection of two passive systems is still passive [10, 19, 5]. Compositional arguments have been also provided for stability analysis of complex interconnected systems [5, 8]. In [5], results about \(L_2\)-finite-gain stability of interconnected passive systems are provided under the assumption that the interconnections fulfill structural constraints so as to satisfy suitable Riccati inequalities. A more recent reference highlighting advantages of passivity in networked systems can be found in [8], where stability and output synchronization is shown for sub-systems interconnected in a Laplacian fashion. Furthermore, [7, 31] explore passivity-based control in networks of dynamical systems where subsystems are connected through dynamic diffusive couplings.

The primary focus of this article is the application of passivity-based control to DC microgrids (DCmGs). Microgrids, both AC and DC, are spatially distributed systems composed of multiple small subsystems, for
example, flexible loads, distributed generation units (DGUs), and storage units, interconnected to each other through an electrical network. Their manifold advantages, like enhanced power quality, reduced transmission losses, capability to operate in grid-connected and islanded modes, and compatibility with renewable distributed generation [4], make them a promising operational architecture for future power systems. In particular, DCmGs, due to higher efficiency, more natural interface to many types of renewable energy sources and storage systems, and better compliance with consumer electronics, have gained traction in recent times [13, 25, 18, 9, 23].

A key challenge in islanded DCmGs is to ensure voltage stability through decentralized control of each DGU [12]. Droop-based voltage stabilization is a commonly used decentralized approach but is plagued by load-dependent voltage deviation, propagation of voltage error along resistive transmission lines, and presence of steady state voltage drifts [32, 16, 12]. Plug-n-play (PnP) control is an alternative decentralized control strategy which guarantees offset-free voltage tracking and allows addition or removal of DGUs with minimal human intervention [23]. Furthermore, the design of a local PnP regulator requires only local models of the corresponding DGU and stabilizes the microgrid irrespective of its size or electrical topology. Primary controllers with PnP features have been proposed in [28, 27, 32]. These regulators, however, are designed only for constant-current loads under Quasi-Stationary-Line (QSL) approximation [29], where line inductances are neglected. Such an approximation is valid for low-voltage networks with predominantly resistive lines. However, in medium-voltage and high-voltage DCmGs, the line inductances are substantial and cannot be disregarded [1]. Moreover, the P component of ZIP loads has inherent nonlinear characteristics with a negative incremental impedance \(dV/dI < 0 \). This introduces a negative damping into the system and has a destabilizing effect. To stabilize DCmG while using these loads, the existing approaches in literature [2, 22, 15, 30] exploit the local addition of positive impedance but are limited by topology and are not scalable.

Main contributions: This paper presents a novel result on the stability of interconnected nonlinear passive systems. We consider a specific class of skew-symmetric interconnections, which are not covered by existing contributions in [5] and [8]. Moreover, the interconnections in [7, 31] are a special case of the generic interconnections introduced in this work. These skew-symmetric couplings are present in DCmGs and find applications in the analysis of voltage stability. The DCmG is modeled as an interconnection of DGUs, nonlinear ZIP loads, and dynamic RLC lines. To characterize the stability of closed-loop DCmG by utilizing the properties of local systems without using linearization procedures, passivity-based arguments become very convenient. To passivate DGUs and loads, and subsequently guarantee voltage stability, we introduce a PnP decentralized multivariable PI controller based on [27]. However, in [27], stabilizing control gains are computed using linear matrix inequalities, which may suffer from numerical infeasibility. In this work, we provide explicit inequalities for each entry of the control gain matrix as a function of electrical parameters of the DGU. These explicit inequalities provide a range of control gains, enabling one to synthesize stabilizing controllers even when the DGU parameters are not accurately known. Moreover, these inequalities are always feasible, do not rely on optimization-based tools, and facilitate local control design in a PnP fashion. We prove voltage stability independently of the DCmG topology under the following assumptions: 1) the power consumption of P component is within certain bounds and 2) the initial state of the DGUs belong to a set such that they are passive. Stronger results are provided for ZI and net-generating P loads.

Paper Organization: The remainder of Section 1 introduces relevant preliminaries and notation. The main theorem on stable interconnection of passive systems is derived in Section 2. Section 3 presents the model of DCmG, the design of local voltage regulators, and the stability analysis of the closed-loop DCmG for the general case of ZIP loads. Simulations validating theoretical results are provided in Section 4. Finally, conclusions are drawn in Section 5.

A preliminary version of this article [26] will be presented at the American Control Conference 2018. The analysis in [26], however, is restricted to linear constant current loads. In the present paper, the general case of nonlinear ZIP loads is analyzed, which requires a more sophisticated definition of passivity. Moreover, explicit inequalities for control design are provided along with detailed proofs, which are skipped in the conference version.

1.1 Preliminaries and notation

Sets, vectors, and functions: We let \(\mathbb{R} \) (resp. \(\mathbb{R}_{>0} \)) denote the set of real (resp. strictly positive real) numbers. Given \(x \in \mathbb{R}^n \), \(\| x \| = \text{diag}(x) \in \mathbb{R}^{n \times n} \) is the associated diagonal matrix with elements of \(x \) on the diagonal. Throughout, \(1_n \) and \(0_n \) are the \(n \)-dimensional vectors of unit and zero entries, whereas \(0 \) and \(1 \), respectively, are zero and identity matrices of appropriate dimensions. For a matrix \(A \in \mathbb{R}^{n \times m} \), the null space (or kernel) of \(A \) is indicated by \(\ker(A) \).

Algebraic graph theory: We denote by \(G(V, \mathcal{E}, W) \) a weighted digraph, where \(V = \{1, \ldots, N\} \) is the node set, \(\mathcal{E} \subseteq (V \times V) \) is the edge set, and \(W = \{w_{ij} \in \mathbb{R}, (i, j) \in \mathcal{E}\} \) is the set of weights. If for all \((i, j) \in \mathcal{E}\), one has \((j, i) \notin \mathcal{E}\) and \(w_{ij} = w_{ji}\), then the graph is said to be undirected, otherwise, directed. All digraphs in this work are assumed to be without self loops, that is, \((i, i) \notin \mathcal{E}\).
For node $i \in V$, $N_i^+ = \{j \in V : (i,j) \in E\}$ denotes the set of out-neighbors, $N_i^- = \{j \in V : (j,i) \in E\}$ the set of in-neighbors, and $N_i = N_i^+ \cup N_i^-\}$ the set of neighbors. The adjacency matrix $A \in \mathbb{R}^{N \times N}$ is defined by
\[
A_{ij} = \begin{cases}
 w_{ij} & \text{if } j \in N_i^+ \\
 0 & \text{otherwise}
\end{cases}
\]

Passivity theory: Consider a control-affine nonlinear system
\[
\Sigma_{NL} = \begin{cases}
 \dot{x} = q(x,u) = f(x) + g(x)u \\
y = h(x)
\end{cases}
\]
where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$, and $u \in \mathbb{R}^p$. The functions $q : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$, $g : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^p$, and $h : \mathbb{R}^n \to \mathbb{R}^p$ are twice continuously differentiable, verifying $g(0,0) = 0$, $f(0) = 0$, and $h(0) = 0$. Note that inputs and outputs have the same dimension p.

Definition 1 The nonlinear system Σ_{NL} is passive [19] if there exists a continuously differentiable positive-semidefinite storage function $V(x) \geq 0$, $V(0) = 0$, and a function $S(x) \geq 0$, such that
\[
V(x) = u^T y - S(x).
\]
If $S(x) \geq 0$ in a set $X \subset \mathbb{R}^n$ strictly containing the origin, then system Σ_{NL} is said to be locally passive. Moreover, the system Σ_{NL} is strictly passive (resp. strictly locally passive) if $x \neq 0 \Rightarrow S(x) > 0$ (resp. $x \neq 0 \in X \Rightarrow S(x) > 0$).

2 Interconnection of multiple passive systems

Consider a set of N subsystems with control-affine dynamics
\[
\begin{align*}
\dot{x}_i &= f_i(x_i) + g_i(x_i)u_i \\
y_i &= h_i(x_i)
\end{align*}
\]
where $x_i \in \mathbb{R}^{n_i}$, $u_i \in \mathbb{R}^{p_i}$, and $y_i \in \mathbb{R}^{p_i}$. For modeling the interconnections between the subsystems, we introduce a weighted digraph $G(V,E,W)$, where each node represents a subsystem. Suppose that the subsystems are coupled together through the input
\[
u_i = \sum_{j \in N_i^+} w_{ij} y_j - \sum_{j \in N_i^-} w_{ji} y_j \quad i = 1, \ldots, N,
\]
where w_{ij} are scalars. In this article, we focus on these interconnection structures. Let A be the adjacency matrix associated with graph G. We define the skew-symmetric interconnection matrix as
\[
\Phi = A - A^T.
\]
From (3), it is easy to verify that
\[
u = (\Phi \otimes I_p)y,
\]
where \otimes denotes the Kronecker product, $I_p \in \mathbb{R}^{p \times p}$ is the identity matrix, and $u = [u_1^T, \ldots, u_N^T]^T \in \mathbb{R}^{Np}$ and $y = [y_1^T, \ldots, y_N^T]^T \in \mathbb{R}^{N^p}$ are the vectors of inputs and outputs, respectively.

Theorem 1 Consider a set of dynamical subsystems defined by (2) coupled with each other through input (3) such that the interconnections are skew symmetric. Let $x = [x_1^T, \ldots, x_N^T]^T$ be the state of the interconnected system. If each subsystem is locally passive in the set X, with a positive-definite storage function $V_i(x_i), i \in V$, then the following statements hold:

1) there exists a positively invariant compact level set Ω of the function $V(x) = \sum_{i=1}^N V_i(x_i)$, which contains the origin and is included in $X = X_1 \times \cdots \times X_N$.
2) the origin of the interconnected system is simply stable, and
3) if $x(0) \in \Omega$, then, as $t \to \infty$, $x(t)$ converges to the largest invariant set contained in
\[
E = \{x \in \Omega : S_i(x_i) = 0, i \in V\}.
\]

Proof. The set X strictly contains the origin as all sets X_i do, from the definition of local passivity. Moreover, the function $V(x)$ is positive definite in X. Therefore, there exists a sufficiently small $l > 0$ such that the set $\Omega = \{x : V(x) \leq l\} \subset X$ is compact and contains the origin [19]. This proves statement 1). For $x \in X$, the derivative of $V(x)$ along trajectories of (2) and (3) is
\[
\dot{V}(x) = \sum_{i=1}^{N} (-S_i(x_i) + y_i^Tu_i)
\]
\[
= -\sum_{i=1}^{N} S_i(x_i) + \sum_{i=1}^{N} y_i^Tu_i,
\]
\[
= -\sum_{i=1}^{N} S_i(x_i) \leq 0.
\]
To show that the term \(\alpha \) is zero, we utilize (5) to obtain

\[
\alpha = \sum_{i=1}^{N} y_i^T u_i = y^T u = y^T (\Phi \otimes I_p) y = 0,
\]

(8)

where the last identity follows from the fact that \(\Phi \otimes I_p \) is a skew-symmetric matrix and \(\Phi \) has the same property. Since \(\mathbf{V}(x) \) is positive definite and \(\mathbf{V}(x) \leq 0 \) in \(\Omega \subset X \), the origin is simply stable and statement 2) follows. Moreover, the set \(\Omega \) is positively invariant. Thus, we invoke the LaSalle’s Theorem [19], which guarantees that if \(\mathbf{x}(0) \in \Omega \), then the state \(\mathbf{x}(t) \) converges to the largest invariant set in \(E = \{ \mathbf{x} : \mathbf{V}(x) = 0 \} \), which is equivalent to (9) (see the proof of Theorem 1). From the definition of control-affine systems, \(\dot{\mathbf{x}} = 0 \) is an equilibrium of (2)-(3) giving \(\dot{\mathbf{u}} = 0 \). If all the subsystems are strictly passive, from (7), one deduces that \(\mathbf{V}(x) \) is globally negative definite as \(\mathbf{S}(x) > 0 \forall x \neq 0 \). From Lyapunov Theory [19], global asymptotic stability of the origin is implied.

Example 1 Consider a dynamical system composed of subsystems

\[
\dot{x}_i = -a_i x_i + u_i, \quad a_i > 0, \quad x_i, y_i, u_i \in \mathbb{R}.
\]

The \(i \)th subsystem is strictly passive with respect to the storage function \(\mathbf{V}(x_i) = (1/2)x_i^2 \) since \(\dot{\mathbf{V}}(x_i) = -\mathbf{S}(x_i) + y_i u_i \) with \(\mathbf{S}(x_i) = a_i x_i^2 \). Let the digraphs \(\mathcal{G} \) in Fig. 1 define the interconnections between the various subsystems. If the subsystems are coupled through inputs \(\mathbf{w} \).

![Fig. 1. A representative graph \(\mathcal{G} \).](image)

\[
u_i = \sum_{j \in \mathcal{N}_i^+} w_{ij} y_j - \sum_{j \in \mathcal{N}_i^-} w_{ji} y_j, \quad \text{from Corollary 1,}
\]

the origin of the interconnection is globally asymptotically stable.

3 Application of passivity theory to microgrids

In this section, we describe the electric model of a DCmG comprising of multiple DGUs connected to each other via power lines. In particular, we adopt the model in [28] which allows for general DCmG topologies.

DCmG Model: The electric interconnections in a DCmG are modeled as a directed connected graph \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \). \(\mathcal{V} \) is partitioned into two sets: \(\mathcal{D} = \{1, \ldots, N\} \) represents the DGUs and \(\mathcal{L} = \{M + 1, \ldots, M + N\} \) is the set of power lines. Each DGU is interfaced with the DCmG.
The power lines are represented by the \(\text{DGU} \) diagram. Since each \(\text{DGU} \) is directly connected only to the lines, all edges in \(\mathcal{G} \) have one node in \(\mathcal{D} \) and other in \(\mathcal{L} \), making \(\mathcal{G} \) a bipartite graph [3]. The orientation of each edge represents the reference direction of positive currents which is arbitrarily assigned. It is evident that a line cannot have only in-neighbors or out-neighbors as the current entering in a line must leave it. Indeed, each node in \(\mathcal{L} \) is always connected to two different nodes in \(\mathcal{D} \) through two directed edges. We define a matrix \(B \in \mathbb{R}^{N \times M} \), with \(\text{DGUs} \) along rows and lines along columns, as

\[
B_{il} : \begin{cases}
1 & l \in \mathcal{N}_i^+ \\
-1 & l \in \mathcal{N}_i^- \\
0 & \text{otherwise}
\end{cases}, \quad i \in \mathcal{D}, \ l \in \mathcal{N}.
\]

Dynamic model of a power line: The power lines are represented by the \(\pi \)-equivalent model of the transmission line [21]. It is assumed that the line capacitances are lumped with the \(\text{DGU} \) filter capacitance (capacitor \(C_{ti} \) in Figure 3). Therefore, as shown in Figure 3, the power line \(l \) is modeled as a RL circuit with resistance \(R_l > 0 \) and inductance \(L_l > 0 \). By applying Krichoff’s voltage law (KVL) on the \(l^{th} \) power-line, one obtains

\[
\Sigma_{\text{line}}^{[l]} : \begin{cases}
dI_l dt = \frac{-R_l I_l}{L_l} + \frac{1}{L_l} \sum_{i \in N_l} B_{il} V_i, \quad & (11)
\end{cases}
\]

where the variables \(V_i \) and \(I_l \) represent the voltage at \(\text{PCC}_i \) and the current flowing through the \(l^{th} \) power line respectively.

Dynamic model of a \(\text{DGU} \): The \(\text{DGU} \) comprises a DC voltage source (usually generated by a renewable resource), a Buck converter, and a series RLC filter. The \(i^{th} \) \(\text{DGU} \) feeds a local load at \(\text{PCC}_i \) and is connected to other \(\text{DGUs} \) through power lines. A schematic electric diagram of the \(i^{th} \) \(
\text{DGU} \) along with load, connecting line(s), loads, and local PuP voltage controller is represented in Figure 3. On applying KCL and KVL on the \(\text{DGU} \) side at \(\text{PCC}_i \), we obtain

\[
\Sigma_{\text{DGU}}^{[i]} : \begin{cases}
C_{ti} \frac{dV_i}{dt} = I_{ti} - I_{Li}(V_i) - I_i^*, \\
L_{ti} \frac{dI_{ti}}{dt} = -V_i - R_{ti} I_{ti} + V_{ti}, \quad i \in \mathcal{D},
\end{cases}
\]

where \(I_i^* \), a function of line currents, is the net-current injected into the DCmG and is given by

\[
I_i^* = \sum_{i \in \mathcal{N}_i^+} B_{il} I_l + \sum_{i \in \mathcal{N}_i^-} B_{il} I_l = \sum_{i \in \mathcal{N}_i} B_{il} I_l. \quad (13)
\]

In (12), \(V_{ti} \) is the command to the Buck converter and \(I_{ti} \) is the filter current. The terms \(R_{ti} \in \mathbb{R}_{>0}, L_{ti} \in \mathbb{R}_{>0} \), and \(C_{ti} \in \mathbb{R}_{>0} \) are the internal resistance, capacitance (lumped with the line capacitances), and inductance of the \(\text{DGU} \) converter.

Load model: In (12), the current flowing through the \(i^{th} \) load is denoted by the term \(I_{Li}(V_i) \). Depending upon the type of load, the functional dependence on the PCC voltage changes and the term \(I_{Li}(V_i) \) takes different expressions. Prototypical load models that are of interest include the following:

1. **constant current loads:** \(I_{Li} = I_{Li}^* \),
2. **constant impedance loads:** \(I_{Li}(V_i) = Y_{Li} V_i \), where \(Y_{Li} = 1/R_{Li} \),
3. **constant power loads:**

\[
I_{L_i P_i}(V_i) = V_i^{-1} P_{L_i}^*, \quad (14)
\]

where \(P_{L_i}^* > 0 \) is the power demand of the load \(i \).

To refer to the three load cases above, the abbreviations \(I, Z, \text{and } P \) are often used [21]. The analysis presented in this article will focus on the general case of a parallel combination of the three loads, thus on the case of ZIP loads, which are modeled as

\[
I_{Li}(V_i) = I_{Li} + Y_{Li} V_i + V_i^{-1} P_{L_i}^*, \quad (15)
\]

The loads are said to be net consuming if they draw current from the grid and \(\text{DGUs} \), that is, \(I_{Li}(V_i) > 0 \) according to the current direction in Figure 3. In a scenario where the loads are net generating, they inject current into the grid and hence \(I_{Li}(V_i) < 0 \).
3.1 Structure of local voltage controllers

The main objective of local controllers is to ensure that the voltage at PCC$_i$ tracks a reference voltage $V_{ref,i}$ usually provided by a higher-level controller. If the voltages are not stabilized, they can increase beyond a critical level, resulting in damage to the connected loads. A necessary condition to track a reference voltage is to steer the error $e_{i}(t) = V_{ref,i}(t) - V_i(t)$ to zero as $t \to \infty$. For this purpose, as in [27], we augment each DGU with a state-feedback integrator

$$\frac{d\hat{x}_i}{dt} = e_{i}(t) = V_{ref,i}(t) - V_i(t), \quad (16)$$

and subsequently equip it with a state-feedback controller

$$C_i : \quad V_i(t) = K_i \hat{x}_i(t), \quad (17)$$

where $\hat{x}_i = [V_i I_{t_i} e_{i}]^T \in \mathbb{R}^3$ is the state of augmented DGU and $K_i = [k_{1,i} k_{2,i} k_{3,i}] \in \mathbb{R}^{1 \times 3}$ is the feedback gain. Under normal microgrid operation, the following assumption is usually verified.

Assumption 1 The reference signal $V_{ref,i}(t)$ is strictly positive for all $t \geq 0$.

It must be noted that, together with the integral action (16), controllers C_i define a multivariable PI regulator (see Figure 3). From (12)-(17), the closed-loop DGU model is obtained as

$$\dot{\hat{x}}_{DGU} : \begin{cases} \frac{dV_i}{dt} &= \frac{1}{C_{ti}}I_{t_i} - \frac{1}{C_{ti}}L_{Li}(V_i) - \frac{1}{C_{ti}}I_i^* \\ \frac{dI_{t_i}}{dt} &= \alpha_i V_i + \beta_i I_{t_i} + \gamma_i e_i \\ \frac{dv_i}{dt} &= -V_i + V_{ref,i} \end{cases}, \quad (18)$$

where

$$\alpha_i = \frac{(k_{1,i} - 1)}{L_{t_i}}, \quad \beta_i = \frac{(k_{2,i} - R_{t_i})}{L_{t_i}}, \quad \gamma_i = \frac{k_{3,i}}{L_{t_i}}. \quad (19)$$

In particular, the control architecture is decentralized since the computation of V_i requires the state of $\hat{\Sigma}_{DGU}$ only. It is important to highlight that, in general, decentralized design of local regulators can fail to guarantee voltage stability of the whole DCmG [28, 27]. This is due to the fact that DGUs interact through I_i^* which in turn is a function of PCC voltages and line currents.

3.2 Stability of the microgrid

When DGUs are equipped with controllers (17), the whole DCmG can always be stabilized, as shown in the sequel. We will exploit skew-symmetric interactions and passivity to guarantee the stability of the DCmG model described by (11), (13), (15), and (18). The system (18) can be equivalently written as

$$\hat{\Sigma}_{DGU} : \hat{x}_i = \hat{f}_i(\hat{x}_i) + \hat{g}_i(\hat{x}_i)\bar{u}_i + \varphi_i, \quad (20)$$

where $\hat{f}_i(\hat{x}_i) = \hat{A}_i[\hat{x}_i] \in \mathbb{R}^3$, $\hat{g}_i(\hat{x}_i) = \hat{B}_i[\bar{u}_i] \in \mathbb{R}^3$, $\varphi_i = [-C_{ti}^{-1}(L_{Li} + V_i^{-1}P_{Li}) 0 V_{ref,i}]^T \in \mathbb{R}^3$, and $\bar{u}_i = -I_i^*$. Matrices $\hat{A}_i[\hat{x}_i]$ and $\hat{B}_i[\bar{u}_i]$ are defined as

$$\hat{A}_i[\hat{x}_i] = \begin{bmatrix} -\frac{Y_{Li}}{C_{ti}} & \frac{1}{C_{ti}} & 0 \\ \alpha_i & \beta_i & \gamma_i \\ -1 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad \hat{B}_i[\bar{u}_i] = \begin{bmatrix} \frac{1}{C_{ti}} \\ 0 \\ 0 \end{bmatrix}.$$

Similarly, from (11), one has

$$\Sigma_{Line} : \hat{x}_i = \hat{f}_i[\hat{x}_i] + \hat{g}_i[\hat{x}_i] \bar{u}_i, \quad (21)$$
where $x_{[i]} = I_t, f_{[i]}(x_{[i]}) = -\frac{R}{L_t}I_t, g_{[i]}(x_{[i]}) = \frac{1}{L_t}$, and $u_{[i]} = \sum_{i \in N_i} B_{di}V_i$.

Our main aim is to apply Theorem 1 which requires control-affine dynamics defined in (2). To match the form in (2), the vector $\varphi_{[i]}$ in (20) must be removed. To this purpose, as customary in nonlinear system analysis, we apply an appropriate shift of coordinates. Subsequently, we will show the stability in the shifted coordinates, thus analyzing, at once, the stability of all equilibria generated for different choices of constant exogenous inputs $V_{ref,i}$ and I_L. In matrix form, (20) and (21) can be written as

$$
\dot{\bar{X}} = \begin{bmatrix}
\dot{V} \\
\dot{I}_t \\
\dot{\bar{v}} \\
\dot{I}
\end{bmatrix} = \begin{bmatrix}
-C_t^{-1}Y_t & -C_t^{-1}B \\
\alpha & \beta & \gamma \\
-1 & 0 & 0 & 0 \\
L_t^{-1}B_t & 0 & 0 & -L_t^{-1}R
\end{bmatrix}
\begin{bmatrix}
V \\
I_t \\
v \\
I
\end{bmatrix}
+ \begin{bmatrix}
0 \\
V_{ref} \\
0 \\
0
\end{bmatrix},
$$
(22)

where $V \in \mathbb{R}^N, V_{ref} \in \mathbb{R}^N, I_t \in \mathbb{R}^N, v \in \mathbb{R}^N, I \in \mathbb{R}^M, P_L^* \in \mathbb{R}^N, I_L \in \mathbb{R}^N, \alpha \in \mathbb{R}^N, \beta \in \mathbb{R}^N, \gamma \in \mathbb{R}^N$ are vectors of PCC voltages, reference voltages, filter currents, integrator states, line currents, load powers, load currents, and parameters $\alpha_t, \beta_t, \gamma_t$, respectively. The matrices $R \in \mathbb{R}_+^{M \times M}, L \in \mathbb{R}_+^{N \times N}, Y \in \mathbb{R}_+^{N \times N}$, and $C_t \in \mathbb{R}_+^{N \times N}$ are positive-definite diagonal matrices collecting electrical parameters R_l, L_l, Y_{L_t}, and C_t, respectively. For a given $V_{ref,i}$ and I_t, the equilibrium of (22) is obtained by setting \bar{X} to zero. By direct calculation, one obtains a system of nonlinear equations whose solution is unique and given by

$$
\bar{X} = \begin{bmatrix}
\bar{V} \\
\bar{I}_t \\
\bar{v} \\
\bar{I}
\end{bmatrix} = \begin{bmatrix}
V_{ref} \\
B_t + Y_tV_{ref} + [V_{ref}]^{-1}P_L^* + I_L \\
-\gamma_t^{-1}([\alpha]V_{ref} + [\beta]I_t) \\
R_t^{-1}B_tV_{ref}
\end{bmatrix}.
$$
(23)

Using the shift of coordinates

$$
\tilde{X} = X - \bar{X} = \begin{bmatrix}
\tilde{V} \\
\tilde{I}_t \\
\tilde{v} \\
\tilde{I}
\end{bmatrix} = \begin{bmatrix}
V - \bar{V} \\
I_t - \bar{I}_t \\
v - \bar{v} \\
I - \bar{I}
\end{bmatrix},
$$
(24)

system (22) can be rewritten as

$$
\dot{\tilde{X}} = \begin{bmatrix}
-C_t^{-1}Y_t & -C_t^{-1}B \\
\alpha & \beta & \gamma \\
-1 & 0 & 0 & 0 \\
L_t^{-1}B_t & 0 & 0 & -L_t^{-1}R
\end{bmatrix}
\begin{bmatrix}
\tilde{V} \\
\tilde{I}_t \\
\tilde{v} \\
\tilde{I}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
-V_{ref} \\
0 \\
0
\end{bmatrix},
$$
(25)

where $\Theta(V) = ([V]^{-1}P_L^* - [V_{ref}]^{-1}P_L^*)$. This term can be simplified as

$$
\Theta(V) = \begin{bmatrix}
\frac{P_L^*}{V_t - V_{ref,t}} \\
\frac{P_{LN}^*}{V_t - V_{ref,N}}
\end{bmatrix} - \begin{bmatrix}
\tilde{Y}_{L_1}(\tilde{V}_t) & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \tilde{Y}_{LN}(\tilde{V}_N)
\end{bmatrix} = \begin{bmatrix}
\frac{P_L^*}{V_t - V_{ref,t}} \\
\frac{P_{LN}^*}{V_t - V_{ref,N}}
\end{bmatrix} - \begin{bmatrix}
\frac{P_L^*}{V_t - V_{ref,t}} \\
\frac{P_{LN}^*}{V_t - V_{ref,N}}
\end{bmatrix},
$$
(26)

has the dimensions of admittance and depends on variables \tilde{V}_t and $V_{ref,t}$. We define $\tilde{Y}_{L_1}(\tilde{V}_t)$ as the varying admittance of the constant power load. Substituting the above equation in (25), one obtains

$$
\dot{\tilde{X}} = \begin{bmatrix}
-C_t^{-1}Y_t & -C_t^{-1}B \\
\alpha & \beta & \gamma \\
-1 & 0 & 0 & 0 \\
L_t^{-1}B_t & 0 & 0 & -L_t^{-1}R
\end{bmatrix}
\begin{bmatrix}
\tilde{V} \\
\tilde{I}_t \\
\tilde{v} \\
\tilde{I}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix},
$$
(27)

where $A(\tilde{X})$ is nonlinear and essentially depends upon the state \tilde{V}. This nonlinearity is induced by the P component of the ZIP load. The above equation represents the global dynamics of the DCmG network in the shifted coordinates defined by (24). Note that the global shifted system in (27) can be split back into following DGU and line models

$$
\dot{\tilde{Y}}_{DGU} : \begin{cases}
\frac{d\tilde{V}_t}{dt} = \frac{1}{C_t} I_{t} - \frac{1}{C_t} I_{Li}(\tilde{V}_t) - \frac{1}{C_t} I_{t}^*
\\
\frac{d\tilde{I}_{t}}{dt} = \alpha_t \tilde{V}_t + \beta_t \tilde{I}_{t} + \gamma_t \tilde{v}_t
\\
\frac{d\tilde{v}_t}{dt} = -\tilde{v}_t
\\
\frac{d\tilde{I}_{t}}{dt} = -R_t \tilde{I}_{t} + \frac{1}{L_t} \sum_{i \in N_t} B_{di} \tilde{V}_i
\end{cases},
$$
(28)
where $i \in \mathcal{D}$, $l \in \mathcal{L}$, and $\hat{I}_{L_i}(V_i) = (Y_{L_i} V_i + Y_{L_i}(\hat{V}_i) \dot{V}_i)$. Equivalently, (28) can be represented in control-affine form as

$$\Sigma^{DGU}_{t}[i]: \begin{cases} \dot{x}_i = \begin{bmatrix} \dot{f}_i[x_i] + \dot{g}_i[x_i]u_i \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} Y_{L_i} + Y_{L_i}(\hat{V}_i) \end{pmatrix} & 0 \\ \frac{C_{t_i}}{\alpha_i} & \frac{C_{t_i}}{\beta_i} & \gamma_i \end{bmatrix} \end{cases} \quad u_i \in \mathcal{D}$$

$$\Sigma^{Line}_{t}[i]: \begin{cases} \dot{\tilde{y}}[l] = \begin{bmatrix} \dot{f}_l[\tilde{y}_l]\tilde{y}_l \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} Y_{L_i} \end{pmatrix} & \begin{pmatrix} 0 \end{pmatrix} \end{bmatrix} \end{cases} \quad \tilde{y}_l \in \mathcal{D}$$

where $\tilde{x}_i = \begin{bmatrix} \tilde{V}_i \tilde{I}_i \end{bmatrix}^T \in \mathbb{R}^{3}$, $\tilde{f}_i[\tilde{x}_i] = \tilde{A}_i[\tilde{x}_i]\tilde{x}_i \in \mathbb{R}^{3}$, $\tilde{g}_l[\tilde{x}_i] = \tilde{B}_l[\tilde{x}_i] = \tilde{V}_i$, and $\tilde{u}_i = -\tilde{I}_i^* = -\sum_{i \in \mathcal{N}_i} B_{il}\tilde{I}_i$. (30)

The matrices $\tilde{A}_i[\tilde{x}_i]$ and $\tilde{B}_l[\tilde{x}_i]$ are defined as

$$\tilde{A}_i[\tilde{x}_i] = \begin{bmatrix} -Y_{L_i} + Y_{L_i}(\hat{V}_i[1,1]) & \frac{1}{\beta_i} & 0 \\ \frac{C_{t_i}}{\alpha_i} & \frac{C_{t_i}}{\beta_i} & \gamma_i \\ -1 & 0 & 0 \end{bmatrix}, \quad \tilde{B}_l[\tilde{x}_i] = \begin{bmatrix} \frac{C_{t_i}}{\gamma_i} \\ 1 \end{bmatrix} \quad \tilde{y}_l = \sum_{i \in \mathcal{N}_l} B_{il}\tilde{I}_i$. (31)

Similarly, $\tilde{x}_i = \begin{bmatrix} \tilde{V}_i \tilde{I}_i \end{bmatrix}^T \in \mathbb{R}^{3}$, $\tilde{f}_i[\tilde{x}_i] = \frac{1}{\beta_i}\tilde{I}_i$, $\tilde{g}_l[\tilde{x}_i] = \tilde{B}_l[\tilde{x}_i] = \tilde{V}_i$, and $\tilde{u}_i = -\tilde{I}_i^* = -\sum_{i \in \mathcal{N}_i} B_{il}\tilde{I}_i$. (31)

Remark 1 From the state space representation in (29), one can represent the global state of the closed-loop DCmG as

$$\tilde{x} = [\tilde{x}_i, \cdots, \tilde{x}_{[N + M]}]^T$$

It must be noted that both \tilde{x} and \tilde{x} contain the same scalar variables, just stacked differently.

A necessary precondition to apply Theorem 1 is that the interconnections between DGUs and power lines are skew-symmetric. The is shown in the following Lemma.

Lemma 1 The electrical interconnections in DCmG between DGUs and power lines given by (30) and (31) are skew-symmetric.

Proof. The input (30) to $\Sigma^{DGU}_{t}[i]$ (20) can be equivalently written as

$$\tilde{u}_i = \sum_{i \in \mathcal{N}_i} B_{il}\tilde{y}_l[1] - \sum_{i \in \mathcal{N}_i} B_{il}\tilde{y}_l[1] - \sum_{i \in \mathcal{N}_i} B_{il}\tilde{y}_l[1]$$

Using (10), one obtains

$$w_{id} = -1 \ l \in \mathcal{N}_i^+ \text{ and } w_{id} = -1 \ l \in \mathcal{N}_i^-.$$ (32)

Also, for line $\Sigma^{Line}_{t}[i]$,

$$\tilde{u}_l = \sum_{i \in \mathcal{N}_i} B_{il}\tilde{y}_l[1] - \sum_{i \in \mathcal{N}_i} B_{il}\tilde{y}_l[1] - \sum_{i \in \mathcal{N}_i} B_{il}\tilde{y}_l[1].$$

Note that if $i \in \mathcal{N}_i^+$, then $l \in \mathcal{N}_i^-$ and $B_{id} = -1$. Conversely, $B_{id} = 1$ if $i \in \mathcal{N}_i^-$. Therefore,

$$w_{il} = -1 \ i \in \mathcal{N}_i^+ \text{ and } w_{id} = -1 \ i \in \mathcal{N}_i^-.$$(33)

From (32) and (33),

$$w_{ij} = -1, \ (i, j) \in \mathcal{E}.$$ (34)

Since $\tilde{u}_i[1]$ and $\tilde{u}_i[1]$ correspond to the coupling defined in (3), the interconnection is skew-symmetric.

Since the electrical interconnections in DCmG are skew-symmetric, the asymptotic behavior of the states can be localized using Theorem 1 if the lines and the DGUs (connected to loads) are passive. The DGU i is equipped with a multivariable feedback integral control defined in (17) and one always has the option of manipulating the feedback gains to induce passivity. Moreover, as shown in [5], RL power lines are always strictly passive with a positive-definite storage function

$$\tilde{V}_l[1] = \frac{1}{2} L_{l}\tilde{x}_l^2 \text{ and } \tilde{\mathcal{S}}_l[1] = R_{l}\tilde{x}_l^2, \ l \in \mathcal{L}. \quad (35)$$

Given the passivity of lines, the next step is to show the passivity of the DGUs in the presence of ZIP loads. To this aim, we propose the candidate storage function

$$\tilde{V}_l[1] = \frac{1}{2} L_{l}\tilde{x}_l^2 \quad (36)$$

where $i \in \mathcal{D}$ and $\omega_i = \gamma_i - \alpha_i \beta_i$. Recall, from (19), that α_i, β_i, and γ_i are functions of feedback gains $k_{1,i}$, $k_{2,i}$, and $k_{1,i}$, respectively. The conditions for the passivity of a DGU are summarized in the following theorem.

Theorem 2 (Local passivity of a DGU) Let Assumption 1 holds. For $i \in \mathcal{D}$, if the feedback gains
and the Z and P components of the ZIP load (15) verify
\[P_{Li}^* < Y_{Li}V_{ref,i}^2, \]
then \(\tilde{S}_{DGU}^{[i]} \) in (28) is locally passive in the set
\[\mathcal{X}_{[i]} = \{ \tilde{x}_{[i]} : \tilde{x}_{[i,1]} \geq \frac{P_{Li}^*}{Y_{Li}V_{ref,i}} - V_{ref,i}, \tilde{x}_{[i,2]}, \tilde{x}_{[i,3]} \in \mathbb{R} \} \]
with positive-definite storage function (36) and
\[\tilde{S}_{[i]}(\tilde{x}_{[i]}) = \left(Y_{Li} + \tilde{Y}_{Li}(\tilde{x}_{[i,1]}), \right) \tilde{x}_{[i,1]}^2 - \frac{\beta_i \tilde{x}_{[i,2]} + \gamma_i \tilde{x}_{[i,3]}^2}{\omega_i}. \]

Proof. To ensure (36) is a valid storage function, matrix \(\tilde{P}_{[i]} \) must be positive definite. Since \(\tilde{P}_{[i]} \) is a real symmetric matrix, we use Sylvester’s criterion [17, Theorem 7.2.5] to devise the necessary and sufficient conditions. In our case, this implies
\begin{enumerate}
 \item \(\frac{\alpha_1}{\omega_1} > 0 \), which is satisfied by \((\omega_1, \beta_1) \) in the set
 \[\mathcal{A}_i = \{ (\omega_1, \beta_1) : (\omega_1 > 0, \beta_1 > 0) \text{ or } (\omega_1 < 0, \beta_1 < 0) \}; \]
 \item \(\det \left(\frac{1}{\omega_i} \begin{pmatrix} \beta_i & -\omega_i \\ \omega_i & \alpha_i \end{pmatrix} \right) = -\frac{\beta_i}{\omega_i} > 0 \), which is satisfied by
 \[(\gamma_i, \omega_i) \text{ in the set } \mathcal{B}_i = \{ (\omega_i, \gamma_i) : (\omega_i > 0, \gamma_i < 0) \text{ or } (\omega_i < 0, \gamma_i > 0) \}. \]
\end{enumerate}

On computing the derivatives of \(\tilde{V}_{[i]}(\tilde{x}_{[i]}) \) along the trajectories of \(\tilde{S}_{DGU}^{[i]} \), one obtains
\[\dot{\tilde{V}}_{[i]}(\tilde{x}_{[i]}) = \frac{1}{2} \tilde{x}_{[i]}^T \tilde{P}_{[i]} \tilde{x}_{[i]} + \frac{1}{2} \tilde{x}_{[i]}^T \tilde{P}_{[i]} \tilde{x}_{[i]} \]
\[= \tilde{x}_{[i]}^T \tilde{Q}_{[i]}(\tilde{x}_{[i]}) \tilde{x}_{[i]}, \]
where
\[\tilde{Q}_{[i]}(\tilde{x}_{[i]}) = \begin{bmatrix}
 (Y_{Li} + \tilde{Y}_{Li}(\tilde{x}_{[i,1]})) & 0 & 0 \\
 0 & -\frac{\beta_i}{\omega_i} & -\frac{\gamma_i}{\omega_i} \\
 0 & -\frac{\beta_i}{\omega_i} & -\frac{\gamma_i}{\omega_i}
\end{bmatrix}. \]

On further calculation, \(\tilde{S}_{[i]}(\tilde{x}_{[i]}) \) is obtained as in (40). It is evident that \(\tilde{S}_{[i]}(\tilde{x}_{[i]}) \geq 0 \) only if \(\omega_i \) belongs to the set
\[C_i = \{ \omega_i : \omega_i < 0 \} \]
and
\[Y_{Li} + \tilde{Y}_{Li}(\tilde{x}_{[i,1]}) \geq 0. \]

Under the assumption that (43) holds, \(\tilde{S}_{[i]}(\tilde{x}_{[i]}) \geq 0 \) and \(\tilde{V}_{[i]}(\tilde{x}_{[i]}) > 0 \) are simultaneously verified if \(\alpha_i, \beta_i, \gamma_i \) are such that \((\omega_i, \beta_i) \in \mathcal{A}_i, (\omega_i, \gamma_i) \in \mathcal{B}_i, \) and \(\omega_i \in C_i \). In an equivalent way, \(\alpha_i, \beta_i, \gamma_i \) must belong to
\[\mathcal{Y}_i = \{ (\alpha_i, \beta_i, \gamma_i) : \alpha_i < 0, \beta_i < 0, 0 < \gamma_i < \alpha_i \beta_i \}. \]

Using (19), the set \(\mathcal{Y}_i \) can be rewritten as (37) in terms of \(k_{1,i}, k_{2,i}, \) and \(k_{3,i} \). Note that the inequality (43) is state dependent and can be satisfied only in a region \(\mathcal{X}_{[i]} \) of the state space of the DGU. In order to characterize \(\mathcal{X}_{[i]} \), we use (26) and rewrite (43) as
\[Y_{Li} = \frac{P_{Li}^*}{(\tilde{x}_{[i,1]} + V_{ref,i})V_{ref,i}} \geq 0. \]

Since \(V_{ref,i} > 0 \) (Assumption 1), (45) is satisfied if
\[\tilde{x}_{[i,1]} + V_{ref,i} < 0 \text{ and } \tilde{x}_{[i,1]} \geq \frac{P_{Li}^*}{Y_{Li}V_{ref,i}} - V_{ref,i}. \]

The state \(\tilde{x}_{[i,1]} = 0 \) verifies both inequalities only if (38) holds. In this case, the set \(\mathcal{X}_{[i]} \) given by (39) contains the origin, which is required by the notion of local passivity in Definition 1.

We note that Theorem 2 alone cannot guarantee strict local passivity of \(\tilde{S}_{DGU}^{[i]} \) for the storage function (36). Indeed, for \(b_i \in \mathbb{R} \), the vectors \(\tilde{x}_{[i]} = [0, \gamma_i b_i - \beta_i b_i]^T \) belong to \(\mathcal{X}_{[i]} \) and verify \(\tilde{S}_{[i]}(\tilde{x}_{[i]}) = 0 \) implying that \(\tilde{S}_{[i]}(\tilde{x}_{[i]}) \) can never be positive definite in \(\mathcal{X}_{[i]} \).

Lemma 2 (Stability of the microgrid) Under the assumptions of Theorem 2, the origin of (27) is simply stable. Moreover, there exists a neighborhood \(\mathcal{M} \) of the origin such that if \(\tilde{x}(0) \in \mathcal{M} \), then the state \(\tilde{x} = [\tilde{x}_{[i,1]}, \cdots, \tilde{x}_{[N+M]}]^T \) asymptotically converges to the largest invariant set in
\[E = \{ \tilde{x} \in \mathcal{M} : \tilde{S}_{[i]}(\tilde{x}_{[i]}) = 0, \tilde{S}_{[i]}(\tilde{x}_{[i]}) = 0, i \in \mathcal{D}, i \in \mathcal{L} \}. \]

Proof. If the conditions in Theorem 2 hold, then the DGUs are locally passive. Moreover, the power lines are
strictly passive, see (35). From Lemma 1, the interconnection of DGUs and lines is skew-symmetric. Therefore, as a direct consequence of Theorem 1, the origin of (27) is simply stable. Furthermore, there exists a compact level set \(\tilde{\mathcal{M}} \) of the function

\[
\tilde{\mathbf{V}}(\tilde{x}) = \sum_{i \in \mathcal{D}} \tilde{\mathbf{V}}_i(\tilde{x}[i]) + \sum_{l \in \mathcal{L}} \tilde{\mathbf{V}}_l(\tilde{y}[l]),
\]

which contains the origin and is included in \(\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_N \times \mathbb{R}^M \). Finally, from Statement 3) of Theorem 1, if \(\tilde{x}(0) \in \tilde{\mathcal{M}} \), the state \(\tilde{x}(t) \) asymptotically converges to the largest invariant set in \(\mathcal{E} \) defined by (46).

Remark 2 (Impact of \(P \) load on passivity) When a \(P \) load is connected to PCC, the DGU \(i \) cannot be passive in the whole state space as \(\tilde{S}_i(\tilde{x}[i]) \geq 0 \) only if \(\tilde{x}[i] \in \mathcal{X}_i \). In the absence of \(P \) loads, \(P_{Li}^1 = 0 \) and, from (26), \(\tilde{Y}_{Li}(\tilde{x}[i]) = 0 \). Then, one can equivalently write \(\tilde{S}_i(\tilde{x}[i]) \) in (40) as

\[
\tilde{S}_i(\tilde{x}[i]) = Y_{Li}\tilde{x}^2_i - \left(\frac{\beta_i\tilde{x}[i,2] + \gamma_i\tilde{x}[i,3]}{\omega_i} \right)^2.
\]

Thus, if the feedback gains belong to \(\mathcal{Z}[i] \), one has \(\tilde{S}_i(\tilde{x}[i]) \geq 0 \) for all \(\tilde{x}[i] \in \mathbb{R}^3 \) and the DGU is passive in the entire state space.

3.3 Asymptotic stability analysis

As shown in Section 3.2, the power lines are strictly passive and the DGUs can be locally passivated by ensuring that the conditions in Theorem 2 hold. From Lemma 2, if the initial states belong to \(\tilde{\mathcal{M}} \), one can conclude that the states asymptotically converge to the largest invariant set in \(\mathcal{E} \) defined by (46). In the sequel, we show that this invariant set contains only the origin, hence showing the asymptotic stability of the DCmG. As a first step, we further characterize the set \(E \).

Proposition 1 Under the assumptions of Theorem 2, the set \(E \) in (46) is given by

\[
E = \{ \tilde{x} \in \tilde{\mathcal{M}} : \tilde{x}[i] = [a_i \gamma_i b_i - \beta_i b_i]^T, \tilde{x}[i] = 0, a_i, b_i \in \mathbb{R}, i \in \mathcal{D}, l \in \mathcal{L} \},
\]

where \(a_i = 0 \) only in the presence of \(Z \) or \(P \) loads (i.e. \(Y_{Li} > 0 \) or \(P_{Li}^1 > 0 \)) at the PCC of the \(i^{th} \) DGU.

PROOF. Since the lines are strictly passive, for \(l \in \mathcal{L} \), \(\tilde{S}_l(\tilde{y}[l]) = 0 \Rightarrow \tilde{x}[l] = 0 \). Moreover, for \(i \in \mathcal{D} \), \(\tilde{S}_i(\tilde{x}[i]) = 0 \) if and only if \(\tilde{x}[i] \in \ker(\tilde{Q}_i) \), where \(\tilde{Q}_i \) is given by (42). By direct computation, one obtains that \(\tilde{x}[i] = [\tilde{x}[i,1] \quad \tilde{x}[i,2] \quad \tilde{x}[i,3]]^T \in \ker(\tilde{Q}_i) \) only if \(\tilde{x}[i,2] = \gamma_i b_i \) and \(\tilde{x}[i,3] = -\beta_i b_i \), where \(b_i \in \mathbb{R} \). For \(a_i \in \mathbb{R} \), one obtains

\[
\tilde{Q}_i[a_i \gamma_i b_i - \beta_i b_i]^T = [a_i(Y_{Li} + \tilde{Y}_{Li}(\tilde{x}[i])) 0 0]^T.
\]

From Assumption 1, the term \(Y_{Li} + \tilde{Y}_{Li}(\tilde{x}[i]) \) in (43) is nonzero only if \(Z \) or \(P \) loads loads are present. This shows (48).

Given the explicit characterization of the set \(E \) in (48), we are now in a position to deduce the largest invariant set in it. In the following theorem, we prove the asymptotic stability of (27) by showing this set is the origin.

Theorem 3 Under the assumptions of Theorem 2, the origin of (27) is asymptotically stable.

PROOF. Using the storage functions \(\tilde{V}_i(\tilde{x}[i]), k \in \mathcal{D} \cup \mathcal{L} \) and the associated functions \(\tilde{S}_i(\tilde{x}[i]) \) defined in (35), (36), and (40), Lemma 2 guarantees simple stability of the microgrid and convergence to the largest invariant set in \(\mathcal{E} \) defined in (48). From Remark 1, the set \(\tilde{E} \) can be equivalently represented in terms of the state \(\tilde{X} \) defined in (24) as

\[
\tilde{E} = \left\{ \tilde{X} \in \tilde{\mathcal{M}} : \tilde{X} = \begin{bmatrix} a \\ [\gamma]b \\ -[\beta]b \\ 0_M \end{bmatrix}, a, b \in \mathbb{R}^N \right\},
\]

where \(a \) and \(b \) are vectors collecting scalars \(a_i \) and \(b_i \). In order to conclude the proof, we need to show that the largest invariant set \(\tilde{M} \subseteq \mathcal{E} \subseteq \tilde{\mathcal{M}} \) is the origin. To find the largest invariant set, we aim to deduce conditions on \(\tilde{X} \in \mathcal{E} \) such that \(\tilde{X} \in \mathcal{E} \). Using (49) and (27), we obtain

\[
\tilde{X} = \tilde{A}(\tilde{X}) \begin{bmatrix} a \\ [\gamma]b \\ -[\beta]b \\ 0_M \end{bmatrix} = \begin{bmatrix} -C_{i}^{-1}(Y_{Li} + \tilde{Y}_{Li})a + C_{i}^{-1}[\gamma]b \\ [\gamma]a \\ -a \\ L^{-1}B^Ta \end{bmatrix}.
\]

Therefore, \(\tilde{X} \in \mathcal{E} \) if and only if the following hold:

\[
L^{-1}B^Ta = 0_M, \quad -[\alpha][\beta]a = [\gamma]a.
\]

We assume, by contradiction, that vector \(a \) with \(a_i \neq 0 \), \(\forall i \in \mathcal{D} \) verifies both (50a) and (50b). From (50a), one obtains that \(a \in \ker(B^T) \). Since the graph \(\mathcal{G} \) is
connected, \(\ker(B^T) = \text{span}(1_N) \) [6]. Then, (50b) holds only if
\[
-\alpha_i \beta_i = \gamma_i, \forall i \in D. \quad (51)
\]
As shown in the proof of Theorem 2, if the feedback gains \(k_{1,i}, k_{2,i}, \) and \(k_{3,i} \) belong to the set \(Z_i \) in (37), then \(\alpha_i < 0, \beta_i < 0, \) and \(\gamma_i > 0. \) Therefore, (50a) can never hold for \(a = 0_N. \)

Therefore, for \(\tilde{X} \) to remain in \(E, \tilde{X} \) must stay in set \(S \subseteq E, \)
\[
S = \left\{ \tilde{X} \in \mathcal{M} : \tilde{X} = \begin{bmatrix} 0_N \\ [\gamma] b \\ -[\beta] b \\ 0_M \end{bmatrix}, b \in \mathbb{R}^N \right\}. \quad (52)
\]
Furthermore, it must hold \(M \subseteq S. \) Then, in order to characterize \(M, \) we assume \(\tilde{X} \in S \) and impose \(\tilde{X} \in S. \)

This translates into the following
\[
\dot{\tilde{X}} = \bar{A}(\tilde{X}) \begin{bmatrix} 0_N \\ [\gamma] b \\ -[\beta] b \\ 0_M \end{bmatrix} = \begin{bmatrix} C_i^{-1}[\gamma] b \\ 0_N \\ 0_N \\ 0_M \end{bmatrix}.
\]

Therefore, \(\tilde{X} \in S \) if and only if \(C_i^{-1}[\gamma] b = 0_N. \) As \(\gamma_i \neq 0, \forall i \in D, \) it must hold that \(b = 0, \) and hence \(\tilde{X} = 0_{N+M}. \) This implies that the largest invariant set \(M \subseteq E \) is \(M = 0_{N+M}. \) By invoking Lemma 2, it can be concluded that the state \(\tilde{X} \) asymptotically converges to the origin.

Remark 3 (Stronger results for ZI loads) The storage functions \(\bar{V}_{k | Z_i} \), \(k \in D \cup L \) are radially unbounded and positive definite, defined in Remark (35) and (36). Furthermore, if only ZI loads are present in the microgrid network, each DGU is passive in the entire state space, see Remark 2. From Corollary 1 and Theorem 3, the origin of (27) is globally asymptotically stable.

Remark 4 (PnP design of local controller) The state feedback controller (17) has a decentralized structure. Recall from (37) that the feedback gains are dependent only on the DGU filter parameters \(R_i \) and \(L_i, \) but not on \(C_i \) (which is assumed to be lumped with line capacitances). This enables PnP operations as described in [27], for example, when a new DGU is plugged-in, its controller can be designed without knowing any other parameter of the microgrid and no other controller in the microgrid needs to be updated in order to preserve voltage stability. In the presence of P loads, the condition (38) must be satisfied by the incoming DGU, failing which the plug-in must be denied. Therefore, the states of the incoming DGUs should be sufficiently close to the origin before a plug-in operation in order to ensure the stability of the network. In practice, this can be achieved by manually controlling the DGU offline before connecting it to the network.

Remark 5 (Robustness to uncertainty in filter parameters) The electrical parameters \(R_i \) and \(L_i \) of the DGU filter depend on operating conditions, environmental factors, and methods used for their estimation. As a result, they are affected by uncertainties often specified as nominal values along with percentage variations. The explicit inequalities (37) allows one to take into account the worst-case scenario, enabling design of controllers robust to bounded parametric uncertainties.

In the remainder of this section, we discuss the microgrid behavior when a local P load injects power into the grid. In such a scenario, \(I_{LPi} (V_i) < 0 \) (see (14)) and hence \(P_{LPi} < 0, \) \(i \in D. \) Under the assumption that the voltages are positive, from (26) and Assumption 1, the inequality (43) is automatically verified. This facilitates the design of the local controller. However, power generating loads can change the direction of \(I_i \) (see Figure 3) and imply the absorption of power by the DGU. Although our model allows for it, in practice DGUs need to be equipped with batteries to absorb power. Next, we characterize power injections by P loads that do not cause reversal in the DGU filter currents, atleast in steady state.

Lemma 2 (Upper bound on power injection) Assume that the DCmG is in steady state for constant inputs \(V_{ref,i} \) and \(I_{Li} \) and let Assumption 1 holds. Let \(\bar{I}_i, i \in D \) and \(\bar{I}_i, l \in N_i \subseteq L \) be the equilibrium values of DGU filter currents and line respectively (see Figure 3). Then, \(\bar{I}_i \geq 0 \) if
\[
|P_{Li}^*| \leq V_{ref,i} I_{i}^* + V_{ref,i} Y_{Li} + V_{ref,i} I_{Li}, \quad (53)
\]
where \(I_{i}^* = \sum_{l \in N_i} B_{il} \bar{I}_l. \)

PROOF. When a local P load injects power, \(I_{LPi} (V_i) < 0. \) On applying KCL at \(PCC_i, \) we have
\[
\bar{I}_i = \sum_{l \in N_i} B_{il} \bar{I}_l + Y_{Li} V_{ref,i} - V_{ref,i} |P_{Li}^*| + I_{Li}.
\]
By direct calculation, using the positivity of \(V_{ref,i} \) and \(\bar{I}_i, \) one obtains (53).
voltage references $V_i = 1$ in (17) have been selected so as to belong to set Z_t in (37). We also highlight that local controllers K_i allowing current flow through power lines in the asymptotic regime. Each PCC are set to slightly different values and thus, a sudden change in load causes an instantaneous voltage drop at PCC s.robusness of the control scheme in presence of uncontrolled load variations.

Plugging in a new DGU: At the beginning of the simulation, DGUs 1-5 are connected together while DGU 6 is isolated. At time $t = 4$ s, we connect $\Sigma_{DGU}^{[6]}$ to $\Sigma_{DGU}^{[1]}$ and $\Sigma_{DGU}^{[2]}$ (see the green edges in Figure 4). As mentioned in Remark 4, since local regulator design hinges on parameters of the corresponding DGU only, no update of any controller in the DCmG is required. In Figure 5, we notice very small deviations of the output voltages at PCCs 1, 5, and 6 from their references around the plug-in time.

Robustness to step change in the P component of a ZIP load: At $t = 8$ s, the power consumption P component of ZIP load at PCC 6 changes from 250W to 1000W. This sudden change in load causes an instantaneous voltage drop at PCC s. As shown in Figure 6c, Figure 6 shows the voltages at PCC 1, 5, and 6 around $t = 8$ s. After short transients, oscillations are absorbed and voltages are restored to their reference values. This depicts the robustness of the control scheme in presence of uncontrolled load variations.

Unplugging of a DGU: Finally, at time $t = 12$ s, we simulate the disconnection of $\Sigma_{DGU}^{[6]}$ (marked in red in Figure 4). As mentioned previously, since the bounds characterizing set Z_i in (37) do not depend on power-line parameters, there is no need to update the controllers of DGUs connected to $\Sigma_{DGU}^{[6]}$ (in this case, DGUs 1 and 4). As shown in Figure 7, the voltages at PCCs 1 and 4 around the unplugging time, exhibit small deviations from the corresponding references and are promptly restored by the control actions.

5 Conclusions

We presented a passivity-based approach to the problem of voltage stability in DCmGs. Different from existing works [28, 27, 32, 9], our DCmG model comprised of dynamic RLC lines and ZIP loads. We provided explicit inequalities on control gains along with other sufficient conditions to guarantee voltage stability in closed-loop DCmG. The control design is fully decentralized and allows removal and addition of DGUs in a PnP fashion.

Many interesting future research directions can be taken. The first one is to consider the application of proposed passivity-based framework to AC microgrids. Another one is the inclusion of more sophisticated load models like thermal loads, electric vehicles, etc. Finally, the compositional property of passivity can be exploited for design of hierarchical control scheme to achieve advanced objectives like current and power sharing, and microgrid optimization.

References

Fig. 5. Performance of the implemented decentralized controllers during the plug-in of DGU 6 at time $t = 4$ s.

(a) Voltage at PCC$_1$.

(b) Voltage at PCC$_5$.

(c) Voltage at PCC$_6$.

Fig. 6. Performance of the implemented decentralized controllers when a step change in the P component of the ZIP load at PCC$_6$ occurs (at time $t = 8$ s).

(a) Voltage at PCC$_1$.

(b) Voltage at PCC$_5$.

(c) Voltage at PCC$_6$.

Fig. 7. Performance of the implemented decentralized controllers during the unplugging of DGU 3 at $t = 12$ s.

(a) Voltage at PCC$_1$.

(b) Voltage at PCC$_4$.

