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Abstract

We consider the application of passivity theory to the problem of voltage stabilization in DC microgrids, which are composed
of distributed generation units, dynamic RLC lines, and nonlinear ZIP (constant impedance, constant current, and constant
power) loads. To this aim, we first study the stable interconnections of constrained passive systems and later consider its
applications to microgrids. More specifically, we consider the decentralized multivariable PI controllers proposed in [29], and
show that they passivate the generation units and the associated loads under certain conditions. To prove voltage stability in the
closed-loop microgrid, we exploit properties of interconnection, passivity of individual components, and the LaSalle’s invariance
theorem. Moreover, we provide explicit inequalities on control gains to design stabilizing controllers. Control synthesis requires
only the knowledge of local parameters and is always feasible allowing removal and addition of DGUs in a plug-n-play fashion.
Theoretical results are backed up by simulations in PSCAD.
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1 Introduction

Passivity theory is one of the most powerful tools for the
analysis of complex systems. It provides a framework
for designing control actions based on considerations re-
lated to the energy of the system, both in the linear
and nonlinear cases. Furthermore, passivity theory has
strong relations with Lyapunov stability [22]. We refer
the reader to [26, 16], and the references therein, for a
detailed discussion about stabilization of nonlinear sys-
tems using passivity-based approaches. For the analy-
sis of large-scale systems, passivity provides a composi-
tional framework, that is, passivity of a system can often
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be shown from the passivity of its components and the
way they are interconnected.

A classic result is that the feedback or parallel inter-
connection of two passive systems is still passive [12,
21, 7]. Compositional arguments have been also pro-
vided for stability analysis of complex interconnected
systems [7, 10]. In [7], results about L2-finite-gain stabil-
ity of interconected passive systems are provided under
the assumption that the interconnections fulfill struc-
tural constraints so as to satisfy suitable Riccati in-
equalities. A more recent reference highlighting advan-
tages of passivity in networked systems can be found in
[10], where stability and output synchronization is shown
for subsystems interconnected in a Laplacian fashion.
Passivity-based control in networks of dynamical sys-
tems where subsystems are connected through dynamic
diffusive couplings is explored in [34, 31, 2, 9]. Further-
more, skew-symmetric interconnection of passive sys-
tems, which subsume the interconnections in [34, 31, 2,
9], is discussed in [3].

The primary focus of this article is the application of
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passivity-based control to DC microgrids (DCmGs).
Microgrids, both AC and DC, are spatially distributed
systems composed of multiple small subsystems, for
example, flexible loads, distributed generation units
(DGUs), and storage units, interconnected to each
other through an electrical network. Their manifold
advantages, like enhanced power quality, reduced trans-
mission losses, capability to operate in grid-connected
and islanded modes, and compatibility with renew-
able distributed generation [6], make them a promising
operational architecture for future power systems. In
particular, DCmGs, due to higher efficiency, more natu-
ral interface to many types of renewable energy sources
and storge systems, and better compliance with con-
sumer electronics, have gained traction in recent times
[15, 27, 20, 11, 25].

A key challenge in islanded DCmGs is to ensure volt-
age stability through decentralized control of each DGU
[14]. Droop-based voltage stabilization is a commonly
used decentralized approach but is plagued by load-
dependent voltage deviation, propagation of voltage er-
ror along resistive transmission lines, and presence of
steady state voltage drifts [35, 18, 14]. Plug-n-play (PnP)
control is an alternative decentralized control strategy
which gurantees offset-free voltage tracking and allows
addition or removal of DGUs with minimal human in-
tervention [25]. Furthermore, the design of a local PnP
regulator requires only local models of the correspond-
ing DGU and stabilizes the microgrid irrespective of its
size or electrical topology. Primary controllers with PnP
features have been proposed in [30, 29, 35]. These reg-
ulators, however, are designed under Quasi-Stationary-
Line (QSL) approximation [32], where line inductances
are neglected. In addition to QSL approximation, [35]
also approximates the dynamics of the DGUs to a unit
gain. Stability certificates with static lines may suffice for
low-voltage networks with predominantly resistive lines.
However, in medium-voltage and high-voltage DCmGs,
the line inductances are substantial and cannot be dis-
regarded [1].

Furthermore, the aforementioned works are limited to
constant-current loads. In the case of ZIP loads, the P
component has inherent nonlinear characteristics with
a negative incremental impedance (dV/dI < 0). This
introduces a negative damping into the system and has a
destabilizing effect. To stabilize DCmG while using these
loads, the existing approaches in literature [4, 24, 17, 33]
exploit the local addition of positive impedance but are
restricted to specific topologies and are not scalable. A
power consensus algorithm for ZIP loads is studied in
[11], but again, is limited to mGs with static lines and
approximate DGU models.

Main contributions: This paper focuses on the problem
of voltage stability in DC microgrids, which are modelled
as an interconnection of realistic DGUs, nonlinear ZIP
loads, and dynamic RLC lines. To characterize the sta-

bility of closed-loop DCmG by utilizing the properties
of local systems without resorting to linearization proce-
dures, we use a passivity-based argument. More specifi-
cally, we show that the interconnection between various
DCmG components is skew-symmetric [3]. Leveraging
the structural properties of these interconnections, pas-
sivity of individual DCmG components along with the
notion of constrained passivity, we prove the stability of
the overall DCmG network. We also provide a compari-
son of these skew-symmetric interconnections with other
coupling structures in [10, 34, 31, 2, 9].

In order to passivate DGUs and loads, and subsequently
guarantee voltage stability, we utilize the PnP decentral-
ized multivariable PI controller given in [29]. However, in
[29], stabilizing control gains are computed using Linear
Matrix Inequalities (LMIs), which may suffer from nu-
merical infeasibility (examples of this phenomenon are
provided in [28]). In this work, we provide explicit in-
equalities for each entry of the control gain matrix as
a function of electrical parameters of the DGU. These
explicit inequalities provide a range of control gains, en-
abling one to synthesize stabilizing controllers even when
the DGU parameters are not accurately known. More-
over, the inequalities are always feasible, do not rely on
optimization algorithms, and facilitate local control de-
sign in a PnP fashion. We prove asymptotic stability and
offset-free tracking of constant voltage references, inde-
pendent of the DCmG topology, under the following as-
sumptions: the P component of loads is within certain
bounds and the initial state of the DGUs belong to a
set such that they are passive. When only ZI loads are
present in the DCmG, we show that asymptotic stabil-
ity is global, that is, it holds irrespective of the initial
state of the DGUs.

Paper Organization: The remainder of Section 1 intro-
duces relevant preliminaries and notation. The main the-
orem on stable interconnection of passive systems is
derived in Section 2. Section 3 presents the model of
DCmG, the design of local voltage regulators, and the
stability analysis of the closed-loop DCmG for the gen-
eral case of ZIP loads. Simulations validating theoretical
results are provided in Section 4. Finally, conclusions are
drawn in Section 5.

1.1 Preliminaries and notation

Sets, vectors, and functions: We let R (resp. R>0) de-
note the set of real (resp. strictly positive real) num-
bers. Given x ∈ Rn, [x] = diag(x) ∈ Rn×n is the associ-
ated diagonal matrix with elements of x on the diagonal.
Throughout, 1n and 0n are the n-dimensional vectors of
unit and zero entries, whereas 0 and I, respectively, are
zero and identity matrices of appropriate dimensions.
For a matrix A ∈ Rn×m, the null space (or kernel) of A
is indicated by ker(A).
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Algebraic graph theory : We denote by G(V, E ,W) a
weighted digraph, where V = {1, · · · , N} is the node
(or vertex) set, E ⊆ (V × V) is the edge (or branch)
set, and W = {wij ∈ R, (i, j) ∈ E} is the set of
weights. All digraphs in this work are assumed to be
without self loops, that is, (i, i) /∈ E . For node i ∈ V,
N+
i = {j ∈ V : (i, j) ∈ E} denotes the set of out-

neighbors, N−i = {j ∈ V : (j, i) ∈ E} the set of in-
neighbors, and Ni = N+

i ∪ N
−
i the set of neighbors. A

graph G is said to be bipartite if its node set V = X ∪ Y
can be divided into two disjoint and independent sets:
the principal set X and the auxiliary set Y, such that ev-
ery edge connects a node in X to one in Y or vice versa.
The adjacency matrix A ∈ RN×N of G is defined by

Aij =

{
wij if j ∈ N+

i

0 otherwise
.

If G has NE edges, its incidence matrix D ∈ RN×NE has
a row for each node, a column for each edge, and entries

Die =


−1 if node i is the source node of edge e

+1 if node i is the sink node of edge e

0 otherwise

.

Passivity theory : Consider a control-affine nonlinear sys-
tem

ΣNL =

{
ẋ = q(x, u) = f(x) + g(x)u

y = h(x)
,

where x ∈ Rn, y ∈ Rp, and u ∈ Rp. The functions
q : Rn × Rp → Rn, f : Rn → Rn, g : Rn → Rn × Rp,
and h : Rn → Rp are twice continuously differentiable,
verifying q(0, 0) = 0, f(0) = 0, and h(0) = 0. Note that
inputs and outputs have the same dimension p.

Definition 1 The nonlinear system ΣNL is passive
[21] if there exists a continuously differentiable positive-
semidefinte storage function V (x) ≥ 0, V (0) = 0, and
a function S(x) ≥ 0, such that

V̇ (x) = uT y − S(x). (1)

If S(x) ≥ 0 holds in a set X ⊂ Rn strictly containing
the origin, then system ΣNL is said to be locally pas-
sive. Moreover, the system ΣNL is strictly passive (resp.
strictly locally passive) if x 6= 0 ⇒ S(x) > 0 (resp.
x 6= 0, x ∈ X ⇒ S(x) > 0).

2 Interconnection of multiple passive systems

In this article, we consider a system composed of N sub-
systems with control-affine dynamics

ẋi = fi(xi) + gi(xi)ui
yi = hi(xi)

, (2)

where xi ∈ Rni , ui ∈ Rp, and yi ∈ Rp. For modeling the

1 2
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G

Fig. 1. A representative graph G illustrating the intercon-
nections between various subsystems.

interconnections between the subsystems, we introduce
a weighted digraph G(V, E ,W), where each node repre-
sents a subsystem (see Figure 1) . We suppose that the
subsystems are coupled together through the input

ui =
∑
j∈N+

i

wijyj −
∑
j∈N−

i

wjiyj , i = 1, · · · , N, (3)

wherewij are scalars. The coupling structure (3) is called
skew-symmetric [3]. Let A be the adjacency matrix as-
sociated with graph G, and define the skew-symmetric
interconnection matrix as

Φ = A−AT . (4)

From (3), it is easy to verify that

u = (Φ⊗ Ip)y, (5)

where ⊗ denotes the Kronecker product, Ip ∈ Rp×p is
the identity matrix, and u = [uT1 , · · · , uTN ]T ∈ RNp and
y = [yT1 , · · · , yTN ]T ∈ RNp are the vectors of inputs and
outputs, respectively.

2.1 Comparison of skew-symmetric interconnections
with other coupling structures

Interconnections of multiple passive systems have been
investigated in many existing works [34, 31, 9, 2, 7, 10].
In [34, 31, 9, 2], networks are assumed to be composed of
dynamical subsystems associated to the M nodes and P
edges of a given digraph and coupled with each other 1

through

uv = −Dyb

ub = DT yv
, uv, yv,∈ RM , ub, yb,∈ RP , (6)

1 Interconnections in [2] are nonlinear. In order to compare
them with our setting, we assume that they take a linear
form.
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whereD ∈ RM×P is the incidence matrix of the digraph,
u and y, respectively, are vectors containing inputs and
outputs, and the superscripts v and b denote subsys-
tems on vertices (nodes) and branches (edges). Here-
after, we refer to these models as SNE (systems on edges
and nodes). On the other hand, skew-symmetric inter-
connections presented in this work are defined for sub-
systems associated to the nodes of G only. These mod-
els are referred as SN (systems on nodes) hereafter. We
note that an SNE defined on a digraph GSNE can be
mapped into an SN by introducing an auxiliary node
for each edge of GSNE (see Figure 2). By construction,
the resulting graph GSN has a special bipartite structure
(which we call edge-contractible), where each auxiliary
node has exactly one in- and out- neighbor. Moreover,
one can easily verify that the coupling relation (6) can
be represented by (3) when all the weights are set to one.
Conversely, each edge-contractible SN can be mapped
back into an SNE by absorbing the auxiliary nodes into
edges. Indeed, in this case, coupling relations (3) and (6)
coincide by construction. In summary, there is a strict
correspondence between SNE models and SN systems
defined on edge-contractible digraphs.

1 2 3

(E1) (E2)

1 2 3

E1 E2

SNE SN

Fig. 2. A represenative SNE and its associated SN.

However, we argue that SN systems cannot always be
represented by an SNE model. To this aim, consider an
SN with SISO subsystems and defined on a digraph G
which is not edge-contractible (see, for example, Fig-
ure 3). We associate the SN an SNE based on the same

1 3 2w13

w32w31

w21

SN

Fig. 3. A digraph G which is not edge-contractible.

graph G, where: (i) subsystems in the SN are placed on
the nodes of the of SNE, and (ii) subsystems associated
to edges of SNE are static, that is, ub = Ωbyb, where
Ω ∈ RM×M is a diagonal matrix. Note that this map-
ping guarantees that the overall systems represented by
the SN and SNE have the exact same dynamical sub-
systems and differ, at most, in the coupling structure.
Furthermore, in the SNE representation, one could use
the extra degrees of freedom provided by the entries of
Ωb in order to match the skew-symmetric coupling (3).
This is however not possible. Indeed, using (6), one has

uv = −DΩbDT︸ ︷︷ ︸
L

yv. (7)

The matrix L is a symmetric weighted Laplacian, and
hence cannot have the skew-symmetric structure of the
matrix Φ in (5), irrespective of the choice of Ωb. For
instance, considering the SN model in Figure 3 with unit
weights, (5) is

u1

u2

u3

 =


0 −1 0

1 0 −1

0 1 0



y1

y2

y3

 ,
whereas for D given by

D =

e13 e31 e32 e21
−1 1 0 1

0 0 1 −1

1 −1 −1 0


and for Ω = diag(ω13, ω31, ω32, ω21), one obtains (7) as


uv
1

uv
2

uv
3

 = −


ω13 + ω31 + ω21 −ω21 −ω13 − ω31

−ω21 ω32 + ω21 −ω32

−ω13 − ω31 −ω32 ω32 + ω13 + ω31



yv
1

yv
2

yv
3

 .

2.2 Stability of interconnected passive systems

We will discuss the stability of the interconnection
composed of passive subsystems connected in a skew-
symmetric fashion. As proposed in [3], consider the
weighted sum of storage functions

V (x) :=

N∑
i=1

Vi(xi), (8)

where Vi(xi), i ∈ V is a positive-definite storage func-
tion, and x = [xT1 , · · · , xTN ]T is the state of the inter-
connected system. If all the subsystems are passive, the
derivative of V (x) along trajectories of (2) and (3) is

V̇ (x) = −
N∑
i=1

Si(xi) +

N∑
i=1

yTi ui︸ ︷︷ ︸
α=0

= −
N∑
i=1

Si(xi) ≤ 0.

, (9)

By utilizing (5) and using the fact that Φ⊗ Ip is a skew-
symmetric, one can show

α =

N∑
i=1

yTi ui = yTu = yT (Φ⊗ Ip)y = 0. (10)
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Remark 1 If each subsystem is passive with a radially
unbounded positive-definite storage function, from (9),

V̇ (x) ≤ 0. From Lyapunov theory, simple stability of the
origin is guaranteed. We use LaSalle’s Theorem [21] to
guarantee that the state x converges to the largest invari-
ant set in E = {x : Si(xi) = 0, i ∈ V} .

Next, for the sake of completeness, we summarize the
stability results for locally passive systems, which are
not included in [3].

Theorem 1 Consider a set of dynamical subsystems de-
fined by (2) coupled with each other through input (3).
If each subsystem is locally passive in the set Xi with a
positive-definite storage function Vi(xi), i ∈ V, then the
following statements hold:

1) there exists a positively invariant compact level set
Ω of the function (8), which contains the origin and
is included in X = X1 × · · · × XN ,

2) the origin of the interconnected system is simply
stable, and

3) if x(0) ∈ Ω, then, as t → ∞, x(t) converges to the
largest invariant set contained in

E = {x ∈ Ω : Si(xi) = 0, i ∈ V} . (11)

PROOF. The set X strictly contains the origin as all
sets Xi contain it individually (see the definition of lo-
cal passivity). Moreover, the function V (x) is positive
definite in X . Therefore, there exists a sufficiently small
l > 0 such that the set Ω = {x : V (x) ≤ l} ⊂ X is
compact and contains the origin [21]. This proves state-

ment 1). For x ∈ X , from (9), V̇ (x) ≤ 0. Since V (x)

is positive definite and V̇ (x) ≤ 0 in Ω ⊂ X , the origin
is simply stable and statement 2) follows. Moreover, the
set Ω is positively invariant. The compactness and posi-
tive invariance of Ω along with negative semidefiniteness
of V̇ (x) on Ω is sufficient to invoke the LaSalle’s The-
orem [21], which guarantees that if x(0) ∈ Ω, then the
state x(t) converges to the largest invariant set in E ={
x ∈ Ω : V̇ (x) = 0

}
. From (9), for x ∈ Ω, V̇ (x) = 0 is

equivalent to
∑N
i=1 Si(xi) = 0. Since Si(xi) ≥ 0, the

latter condition becomes Si(xi) = 0, i ∈ V, resulting in
(11). This concludes the proof of statement 3). �

As shown in the next section, skew-symmetric intercon-
nections are found in electrical systems and, in particu-
lar, in DCmGs. Theorem 1 and Corollary 1 will enable us
to characterize the closed-loop stability of the microgrid
for a specific class of local voltage controllers associated
to individual DGUs.

3 Application of passivity theory to microgrids

In this section, we start by describing the electric model
of a DCmG comprising of multiple DGUs connected to

each other via power lines. In particular, we adopt the
model in [30] which allows for general DCmG topologies.

Line 6

Line 7

Line 8 Line 9

Line
10

Line
11

DGU 1
Load 1

DGU 2
Load 2

DGU 3
Load 3

DGU 4
Load 4

DGU 5
Load 5

Fig. 4. A representative diagram of the DCmG network.

DCmG Model: The electric interconnections in a DCmG
are modeled as a directed connected graph G = (V, E).
V is partitioned into two sets: D = {1, . . . , N} repre-
sents the DGUs and L = {N + 1, · · · ,M +N} is the set
of power lines. Each DGU is interfaced with the DCmG
through a point of common coupling (PCC). For sim-
plicity, it is assumed that the loads are connected to the
DGU terminals. Indeed, even if load buses are located
elsewhere, they can be mapped to PCC using Kron re-
duction [13]. We refer the reader to Figure 4 for a rep-
resentative DCmG diagram. Since each DGU is directly
connected only to the lines, all edges in E have one node
in D and other in L, making G a bipartite graph [5]. The
orientation of each edge represents the reference direc-
tion of positive currents which is arbitrarily assigned. It
is evident that a line cannot have only in-neighbors or
out-neighbors as the current entering in a line must leave
it. Indeed, each node in L is always connected to two dif-
ferent nodes in D through two directed edges. For later
matrix, we define the matrix B ∈ RN×M , with DGUs
along rows and lines along columns, as

Bil :


1 l ∈ N+

i

−1 l ∈ N−i
0 otherwise

, i ∈ D, l ∈ N . (12)

Dynamic model of a power line: The power lines are rep-
resented by the π-equivalent model of the transmission
line [23]. It is assumed that the line capacitances are
lumped with the DGU filter capacitance (capacitor Cti
in Figure 5). Therefore, as shown in Figure 5, the power
line l is modeled as a RL circuit with resistance Rl > 0
and inductance Ll > 0. By applying Kirchoff’s voltage
law (KVL) on the lth power-line, one obtains

ΣLine[l] :

{
dIl
dt

= −Rl
Ll
Il +

1

Ll

∑
i∈Nl

BilVi , (13)
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where the variables Vi and Il represent the voltage at
PCCi and the current flowing through the lth power line
respectively.

Dynamic model of a DGU: The DGU comprises a DC
voltage source (usually generated by a renewable re-
source), a Buck converter, and a series RLC filter. The
ith DGU feeds a local load at PCCi and is connected
to other DGUs through power lines. A schematic elec-
tric diagram of the ith DGU along with load, connecting
line(s), loads, and local PnP voltage controller is repre-
sented in Figure 5. On applying KCL and KVL on the
DGU side at PCCi, we obtain

ΣDGU[i] :


Cti

dVi
dt

= Iti − ILi(Vi)− I∗i

Lti
dIti
dt

= −Vi −RtiIti + Vti

, i ∈ D, (14)

where I∗i , a function of line currents, is the net-current
injected into the DCmG and is given by

I∗i =
∑
l∈N+

i

BilIl +
∑
l∈N−

i

BilIl =
∑
l∈Ni

BilIl. (15)

In (14), Vti is the command to the Buck converter and
Iti is the filter current. The terms Rti ∈ R>0, Lti ∈ R>0,
and Cti ∈ R>0 are the internal resistance, capacitance
(lumped with the line capacitances), and inductance of
the DGU converter.

Load model: In (14), the current flowing through the ith

load is denoted by the term ILi(Vi). Depending upon
the type of load, the functional dependence on the PCC
voltage changes and the term ILi(Vi) takes different ex-
pressions. Prototypical load models that are of interest
include the following:

(1) constant-current loads: ILIi = ĪLi,
(2) constant-impedance loads: ILZi(Vi) = YLiVi, where

YLi = 1/RLi > 0 is the conductance of the ith load,
and

(3) constant-power loads:

ILPi(Vi) = V −1i P ∗Li, (16)

where P ∗Li > 0 is the power demand of the load i.

To refer to the three load cases above, the abbreviations
I, Z, and P are often used [23]. The analysis presented
in this article will focus on the general case of a parallel
combination of the three loads, thus on the case of ZIP
loads, which are modeled as

ILi(Vi) = ĪLi + YLiVi + V −1i P ∗Li. (17)

The loads are said to be net consuming if they draw cur-
rent from the grid and DGUs, that is, ILi(Vi) > 0 ac-
cording to the current direction in Figure 5. In a scenario

where the loads are net generating, they inject current
into the grid and hence ILi(Vi) < 0.

3.1 Structure of local voltage controllers

The main objective of local controllers is to ensure that
the voltage atPCCi tracks a reference voltage Vref,i usu-
ally provided by a higher-level controller. If the voltages
are not stabilized, they can increase beyond a critical
level, resulting in damage to the connected loads. A nec-
essary condition to track a reference voltage is to steer
the error e[i](t) = Vref,i(t)−Vi(t) to zero as t→∞. For
this purpose, as in [29], we augment each DGU with an
integrator

dvi
dt

= e[i](t) = Vref,i(t)− Vi(t), (18)

and subsequently equip it with a state-feedback con-
troller

C[i] : Vti(t) = K[i]x̂[i](t), (19)

where x̂[i] = [Vi Iti vi]
T ∈ R3 is the state of augmented

DGU and K[i] = [k1,i k2,i k3,i] ∈ R1×3 is the feedback
gain. Under normal microgrid operation, the following
assumption is usually verified.

Assumption 1 The reference signal Vref,i(t) is strictly
positive for all t ≥ 0.

It must be noted that, together with the integral action
(18), controllers C[i] define a multivariable PI regula-
tor (see Figure 5). From (14)-(19), the closed-loop DGU
model is obtained as

Σ̂DGU[i] :



dVi
dt

=
1

Cti
Iti −

1

Cti
ILi(Vi)−

1

Cti
I∗i

dIti
dt

= αiVi + βiIti + γivi

dvi
dt

= −Vi + Vref,i

, (20)

where

αi =
(k1,i − 1)

Lti
, βi =

(k2,i −Rti)
Lti

, γi =
k3,i
Lti

. (21)

In particular, the control architecture is decentralized
since the computation of Vti requires the state of Σ̂DGU[i]

only. It is important to highlight that, in general, decen-
tralized design of local regulators can fail to guarantee
voltage stability of the whole DCmG [30, 29]. This is due
to the fact that DGUs interact through I∗i which in turn
is a function of PCC voltages and line currents.
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Buck i Vti

Rti Lti Iti

Cti

Rl Il
Ll VjVi

ILi(Vi)
I∗i

PCCi

DGU and Load i Power line l
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Fig. 5. Electric Scheme of ith DGU along with load, connecting line(s), and local PnP voltage controller.

3.2 Stability of the microgrid

When DGUs are equipped with controllers (19), the
whole DCmG can always be stabilized, as shown in the
sequel. We will exploit skew-symmetric interactions and
passivity to guarantee the stability of the DCmG model
described by (13), (15), (17), and (20). The system (20)
can be equivalently written as

Σ̂DGU[i] : ˙̂x[i] = f̂[i](x̂[i]) + ĝ[i](x̂[i])û[i] + ϕ[i], (22)

where f̂[i](x̂[i]) = Â[i]x̂[i] ∈ R3, ĝ[i](x̂[i]) = B̂[i] ∈ R3,

ϕ[i] =
[
−C−1ti (ĪLi + V −1i P ∗Li) 0 Vref,i

]T ∈ R3, and

û[i] = −I∗i . Matrices Â[i](x̂[i]) and B̂[i] are defined as

Â[i] =


−YLi
Cti

1

Cti
0

αi βi γi

−1 0 0

 , and B̂[i] =


1

Cti
0

0

 .
Similarly, from (13), one has

ΣLine[l] : ẋ[l] = f[l](x[l]) + g[l](x[l])u[l], (23)

where x[l] = Il, f[l](x[l]) = −Rl

Ll
Il, g[l](x[l]) = 1

Ll
, and

u[l] =
∑
i∈Nl

BilVi.

Our main aim is to apply Theorem 1 which requires
control-affine dynamics defined in (2). To match the form
in (2), the vector ϕ[i] in (22) must be removed. To this
purpose, as customary in nonlinear system analysis, we
apply an appropriate shift of coordinates. Subsequently,
we will show the stability in the shifted coordinates, thus
analyzing, at once, the stability of all equilibria gener-
ated for different choices of constant exogenous inputs

Vref,i and ĪLi. In matrix form, (22) and (23) can be writ-
ten as

Ẋ =


V̇

İt

v̇

İ

 =


−C−1t YL C−1t 0 −C−1t B

[α] [β] [γ] 0

−I 0 0 0

L−1BT 0 0 −L−1R


︸ ︷︷ ︸

A∈R3N+M×3N+M


V

It

v

I



+


−C−1t (ĪL + [V ]−1P ∗L)

0N

Vref

0M



, (24)

where V ∈ RN , Vref ∈ RN , It ∈ RN , v ∈ RN , I ∈ RM ,
P ∗L ∈ RN , ĪL ∈ RN , α ∈ RN , β ∈ RN , γ ∈ RN are
vectors of PCC voltages, reference voltages, filter cur-
rents, integrator states, line currents, load powers, load
currents, and parameters αi, βi, γi, respectively. The
matrices R ∈ RM×M>0 , L ∈ RM×M>0 , YL ∈ RN×N>0 , and

Ct ∈ RN×N>0 are positive-definite diagonal matrices col-
lecting electrical parameters Rl, Ll, YLi, and Ci, respec-
tively. For a given Vref and ĪL, the equilibrium of (24) is

obtained by setting Ẋ to zero. By direct calculation, one
obtains a system of nonlinear equations whose solution
is unique and given by

X̄ =


V̄

Īt

v̄

Ī

 =


Vref

BĪ + YLVref + [Vref ]−1P ∗L + ĪL

−[γ]−1([α]Vref + [β]Īt)

R−1BTVref

. (25)
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Using the shift of coordinates

X̃ = X − X̄, (26)

system (24) can be rewritten as

˙̃X =


−C−1t YL C−1t 0 −C−1t B

[α] [β] [γ] 0

−I 0 0 0

L−1BT 0 0 −L−1R

 X̃ +


−C−1t Θ(V )

0N

0N

0M

 ,
(27)

where Θ(V ) = ([V ]−1P ∗L − [Vref ]−1P ∗L). This term can
be simplified as

Θ(V ) =


P ∗L1
V1
− P ∗L1
Vref,1

...
P ∗LN
VN
− P ∗LN
Vref,N

 =


ỸL1(Ṽ1) 0 0

0
. . . 0

0 0 ỸLN (ṼN )


︸ ︷︷ ︸

ỸL(Ṽ )∈RN×N

Ṽ
,

where

ỸLi(Ṽi) = − P ∗Li
(Ṽi + Vref,i)Vref,i

(28)

has the dimensions of admittance and depends on vari-
ables Ṽi and Vref,i. We define ỸLi(Ṽi) as the varying ad-
mittance of the constant-power load. Substituting the
above equation in (27), one obtains

˙̃X =


−C−1t

(
YL + ỸL(Ṽ )

)
C−1t 0 −C−1t B

[α] [β] [γ] 0

−I 0 0 0

L−1BT 0 0 −L−1R


︸ ︷︷ ︸

Ã(X̃)∈R(3N+M)×(3N+M)

X̃,

(29)

where Ã(X̃) is nonlinear and essentially depends upon

the state Ṽ . This nonlinearity is induced by the P com-
ponent of the ZIP load. The above equation represents
the complete network dynamics of the DCmG network
in the shifted coordinates defined by (26). Note that the
shifted DCmG model in (29) can be split back into fol-

lowing DGU and line models

Σ̃DGU[i] :



dṼi
dt

=
1

Cti
Ĩti −

1

Cti
ĨLi(Ṽi)−

1

Cti
Ĩ∗i

dĨti
dt

= αiṼi + βiĨti + γiṽi

dṽi
dt

= −Ṽi

Σ̃Line[l] :

{
dĨl
dt

= −Rl
Ll
Ĩl +

1

Ll

∑
i∈Nl

BilṼi

, (30)

where i ∈ D, l ∈ L, and ĨLi(Vi) = (YLiṼi + ỸLi(Ṽi)Ṽi).
Equivalently, (30) can be represented in control-affine
form as

Σ̃DGU[i] :

{
˙̃x[i] = f̃[i](x̃[i]) + g̃[i](x̃[i])ũ[i]

ỹ[i] = h̃[i](x̃[i])
i ∈ D

Σ̃Line[l] :

{
˙̃x[l] = f̃[l](x̃[l]) + g̃[l](x̃[l])ũ[l]

ỹ[l] = h̃[l](x̃[l])
l ∈ L

, (31)

where x̃[i] =
[
Ṽi Ĩti ṽi

]T
∈ R3, f̃[i](x̃[i]) = Ã[i](x̃[i])x̃[i] ∈

R3, g̃[i](x̃[i]) = B̃[i] ∈ R3, h̃[i](x̃[i]) = Ṽi, and

ũ[i] = −Ĩ∗i = −
∑
l∈Ni

BilĨi. (32)

The matrices Ã[i](x̃[i]) and B̃[i] are defined as

Ã[i](x̃[i]) =


−
YLi + ỸLi(x̃[i,1])

Cti

1

Cti
0

αi βi γi

−1 0 0

 , B̃[i] =


1

Cti
0

0

 .

Similarly, x̃[l] = Ĩl, f[l](x̃[l]) = −Rl

Ll
Ĩl, g[l](x̃[l]) = 1

Ll
,

h̃[l](x̃[l]) = Ĩl, and

ũ[l] =
∑
i∈Nl

BilṼi. (33)

Remark 2 From the state space representation in (31),
one can represent the overall state of the closed-loop
DCmG as

x̃ =
[
x̃[1], · · · , x̃[N+M ]

]T
.

It must be noted that both X̃ and x̃ contain the same
scalar variables, just stacked differently.

A necessary precondition to apply Theorem 1 is that the
interconnections between DGUs and power lines are of
the form (3). This is shown in the following Lemma.
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Lemma 1 The electrical interconnections between
DGUs and power lines given by (32) and (33) are skew-
symmetric.

PROOF. The input (32) to Σ̃DGU[i] (22) can be equiva-

lently written as

ũ[i] =
∑
l∈Ni

−Bilỹ[l] =
∑
l∈N+

i

−Bil︸ ︷︷ ︸
wil

ỹ[l] −
∑
l∈N−

i

Bil︸︷︷︸
wli

ỹ[l].

Using (12), one obtains

wil = −1 l ∈ N+
i and wli = −1 l ∈ N−i . (34)

Also, for line Σ̃Line[l] ,

ũ[l] =
∑
i∈Nl

Bilỹ[l] =
∑
i∈N+

l

Bil︸︷︷︸
wli

ỹ[i] −
∑
i∈N−

l

−Bil︸ ︷︷ ︸
wil

ỹ[i].

Note that if i ∈ N+
l , then l ∈ N−i and Bil = −1. Con-

versely, Bil = 1 if i ∈ N−l . Therefore,

wli = −1 i ∈ N+
l and wil = −1 i ∈ N−l . (35)

From (34) and (35),

wij = −1, (i, j) ∈ E . (36)

Since ũ[i] and ũ[l] correspond to the coupling defined in
(3), the interconnection is skew-symmetric. �

Remark 3 In the view of Lemma 1, DCmG are SN
models defined on digraphs that are bipartite and edge-
contractible. Therefore, as discussed in Section 2.1, they
could be mapped into SNE models considered, for in-
stance, in [34, 31, 9, 7]. However, as it will be clear in
the sequel, in order to analyze the stability of DCmGs in
presence of ZIP loads, we will rely on the notion of local
passivity and Theorem 1, the latter requiring the use of
SN models.

Since the electrical interconnections in DCmG are skew-
symmetric, the asymptotic behavior of the states can
be localized using Theorem 1 if the lines and the DGUs
(connected to loads) are passive. As shown in [7], RL
power lines are always strictly passive with a positive-
definite storage function

Ṽ[l](x̃[l]) =
1

2
Llx̃

2
[l] and S̃[l](x̃[l]) = Rlx̃

2
[l], l ∈ L. (37)

Each DGU i is equipped with a multivariable feedback
integral control defined in (19) and one has the option

of manipulating the feedback gains to induce passivity.
To this aim, we propose the candidate storage function

Ṽ[i](x̃[i]) =
1

2
x̃T[i]


Cti 0 0

0
βi
ωi

γi
ωi

0
γi
ωi

αiγi
ωi


︸ ︷︷ ︸

P̃[i]∈R3×3

x̃[i], (38)

where i ∈ D and ωi = γi − αiβi. Recall, from (21), that
αi, βi, and γi are functions of feedback gains k1,i, k2,i,
and k3,i respectively. The conditions for the passivity of
a DGU are summarized in the following theorem.

Theorem 2 (Local passivity of a DGU) Let As-
sumption 1 holds. For i ∈ D, if the feedback gains
k1,i, k2,i, and k3,i belong to the set

Z[i] =


k1,i < 1,

k2,i < Rti,

0 < k3,i <
1
Lti

(k1,i − 1)(k2,i −Rti)

 (39)

and the Z and P components of the ZIP load (17) verify

P ∗Li < YLiV
2
ref,i, (40)

then Σ̃DGU[i] in (30) is locally passive in the set

X[i] = {x̃[i] : x̃[i,1] ≥
P ∗Li

YLiVref,i
− Vref,i, x̃[i,2], x̃[i,3] ∈ R}

(41)
with positive-definite storage function (38) and

S̃[i](x̃[i]) =
(
YLi + ỸLi(x̃[i,1])

)
x̃2[i,1]−

(
βix̃[i,2] + γix̃[i,3]

)2
ωi

.

(42)

PROOF. To ensure (38) is a valid storage function,

matrix P̃[i] must be positive definite. Since P̃[i] is a real
symmetric matrix, we use Sylvester’s criterion [19, The-
orem 7.2.5] to devise the necessary and sufficient condi-
tions. In our case, this implies

(1) βi

ωi
> 0, which is satisfied by (ωi, βi) in the set

Ai = {(ωi, βi) : (ωi > 0, βi > 0) or (ωi < 0, βi < 0)};

(2) det

(
βi

ωi

γi
ωi

γi
ωi

αiγi
ωi

)
= − γi

ωi
> 0, which is satisfied by

(γi, ωi) in the set

Bi = {(ωi, γi) : (ωi > 0, γi < 0) or (ωi < 0, γi > 0)}.
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On computing the derivatives of Ṽ[i](x̃[i]) along the tra-

jectories of Σ̃DGU[i] , one obtains

˙̃
V [i](x̃[i]) =

1

2
˙̃xT[i]P̃[i]x̃[i] +

1

2
x̃T[i]P̃[i]

˙̃x[i]

= ũT[i]ỹ[i] − x̃
T
[i]Q̃[i](x̃[i])x̃[i]︸ ︷︷ ︸

S̃[i](x̃[i])

, (43)

where

Q̃[i](x̃[i]) =


(YLi + ỸLi(x̃[i,1])) 0 0

0 −β
2
i

ωi
−βiγi

ωi

0 −βiγi
ωi

−γ
2
i

ωi

 . (44)

On further calculation, S̃[i](x̃[i]) is obtained as in (42). It

is evident that S̃[i](x̃[i]) ≥ 0 only if ωi belongs to the set

Ci = {ωi : ωi < 0}

and
YLi + ỸLi(x̃[i,1]) ≥ 0. (45)

Under the assumption that (45) holds, S̃[i](x̃[i]) ≥ 0 and

Ṽ[i](x̃[i]) > 0 are simultaneously verified if αi, βi, and γi
are such that (ωi, βi) ∈ Ai, (ωi, γi) ∈ Bi, and ωi ∈ Ci. In
an equivalent way, (αi, βi, γi) must belong to

Y[i] = {(αi, βi, γi) : αi < 0, βi < 0, 0 < γi < αiβi}
(46)

Using (21), the set Y[i] can be rewritten as (39) in terms
of k1,i, k2,i, and k3,i. Note that the inequality (45) is
state dependent and can be satisfied only in a region X[i]

of the state space of the DGU. In order to characterize
X[i], we use (28) and rewrite (45) as

YLi −
P ∗Li

(x̃[i,1] + Vref,i)Vref,i
≥ 0. (47)

Since Vref,i > 0 (Assumption 1), (47) is satisfied if

x̃[i,1] + Vref,i < 0 and x̃[i,1] ≥
P ∗Li

YLiVref,i
− Vref,i.

The state x̃[i,1] = 0 verifies both inequalities only if (40)
holds. In this case, the set X[i] given by (41) contains the
origin, which is required by the notion of local passivity
in Definition 1. �

We note that Theorem 2 alone cannot guarantee strict
local passivity of Σ̃DGU[i] for the storage function (38).

Indeed, for bi ∈ R, the vectors x̃[i] = [0 γibi − βibi]T

belong to X[i] and verify S̃[i](x̃[i]) = 0 implying that

S̃[i](x̃[i]) can never be positive definite in X[i].

Lemma 1 (Stability of the microgrid) Under the
assumptions of Theorem 2, the origin of (29) is sim-

ply stable. Moreover, there exists a neighborhood M̃
of the origin such that if x̃(0) ∈ M̃, then the state

x̃ =
[
x̃[1], · · · , x̃[N+M ]

]T
asymptotically converges to the

largest invariant set in

E = { x̃ ∈ M̃ : S̃[i](x̃[i]) =0, S̃[l](x̃[l]) = 0,

i ∈ D, l ∈ L } .
(48)

PROOF. If the conditions in Theorem 2 hold, then the
DGUs are locally passive. Moreover, the power lines are
strictly passive, see (37). From Lemma 1, the intercon-
nection of DGUs and lines is skew-symmetric. There-
fore, as a direct consequence of Theorem 1, the origin of
(29) is simply stable. Furthermore, there exists a com-

pact level set M̃ of the function

Ṽ(x̃) =
∑
i∈D

Ṽ[i](x̃[i]) +
∑
l∈L

Ṽ[l](x̃[l]), (49)

which contains the origin and is included in X = X[1] ×
· · ·×X[N ]×RM . Finally, from Statement 3) of Theorem

1, if x̃(0) ∈ M̃, the state x̃(t) asymptotically converges
to the largest invariant set in E defined by (48). �

Remark 4 (Impact of P load on passivity) When
a P load is connected to PCCi, the DGU i cannot be

passive in the whole state space as S̃[i](x̃[i]) ≥ 0 only if
x̃[i] ∈ X[i]. In the absence of P loads, P ∗Li = 0 and, from

(28), ỸLi(x̃[i,1]) = 0. Then, one can equivalently write

S̃[i](x̃[i]) in (42) as

S̃[i](x̃[i]) = YLix̃
2
[i,1] −

(
βix̃[i,2] + γix̃[i,3]

)2
ωi

. (50)

Thus, if the feedback gains belong to Z[i], one has

S̃[i](x̃[i]) ≥ 0 for all x̃[i] ∈ R3 and the DGU is passive in
the entire state space.

3.3 Asymptotic stability analysis

As shown in Section 3.2, the power lines are strictly pas-
sive and the DGUs can be locally passivated by ensuring
that the conditions in Theorem 2 hold. From Lemma 1,
if the initial states belong to M̃, one can conclude that
the states asymptotically converge to the largest invari-
ant set in E defined by (48). In the sequel, we show that
this invariant set contains only the origin, hence showing
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the asymptotic stability of the DCmG. As a first step,
we further characterize the set E.

Proposition 1 Under the assumptions of Theorem 2,
the set E in (48) is given by

E = { x̃ ∈ M̃ : x̃[i] = [ai γibi − βibi]T , x̃[l] = 0,

ai, bi ∈ R, i ∈ D, l ∈ L } ,
(51)

where ai = 0 only in the presence of Z or P loads (i.e.
YLi > 0 or P ∗Li > 0) at the PCC of the ith DGU.

PROOF. Since the lines are strictly passive, for l ∈ L,

S̃[l](x̃[l]) = 0⇒ x̃[l] = 0. Moreover, for i ∈ D, S̃[i](x̃[i]) =

0 if and only if x̃[i] ∈ ker(Q̃[i]), where Q̃[i] is given by
(44). By direct computation, one obtains that x̃[i] =

[x̃[i,1] x̃[i,2] x̃[i,3]]
T ∈ ker(Q̃[i]) only if x̃[i,2] = γibi and

x̃[i,3] = −βibi, where bi ∈ R. For ai ∈ R, one obtains

Q̃[i][ai γibi − βibi]T = [ai(YLi + ỸLi(x̃[i,1])) 0 0]T .

From Assumption 1, the term YLi + ỸLi(x̃[i,1]) in (45)
is nonzero only if Z or P loads loads are present. This
shows (51). �

Given the explicit characterization of the set E in (51),
we are now in a position to deduce the largest invariant
set in it. In the following theorem, we prove the asymp-
totic stability of (29) by showing this set is the origin.

Theorem 3 Under the assumptions of Theorem 2, the
origin of (29) is asymptotically stable.

PROOF. Using the storage functions Ṽ[k](x̃[k]), k ∈
D ∪ L and the associated functions S̃[k](x̃[k]) defined in
(37), (38), and (42), Lemma 1 guarantees simple stability
of the microgrid and convergence to the largest invariant
set inE defined in (51). From Remark 2, the setE can be

equivalently represented in terms of the state X̃ defined
in (26) as

E =


X̃ ∈ M̃ : X̃ =


a

[γ]b

−[β]b

0M

 , a, b ∈ RN


, (52)

where a and b are vectors collecting scalars ai and bi. In
order to conclude the proof, we need to show that the
largest invariant set M ⊆ E ⊆ M̃ is the origin. To find

the largest invariant set, we aim to deduce conditions on

X̃ ∈ E such that ˙̃X ∈ E. Using (52) and (29), we obtain

˙̃X = Ã(X̃)


a

[γ]b

−[β]b

0M

 =


−C−1t (YL + ỸL)a+ C−1t [γ]b

[α]a

−a
L−1BTa

 .

Therefore, ˙̃X ∈ E if and only if the following hold:

L−1BTa = 0M , (53a)

−[α][β]a = [γ]a. (53b)

We assume, by contradiction, that vector a with ai 6=
0,∀i ∈ D verifies both (53a) and (53b). From (53a),
one obtains that a ∈ ker(BT ). Since the graph G is
connected, ker(BT ) = span(1N ) [8]. Then, (53b) holds
only if

−αiβi = γi,∀i ∈ D. (54)

As shown in the proof of Theorem 2, if the feedback
gains k1,i, k2,i, and k3,i belong to the set Z[i] in (39),
then αi < 0, βi < 0, and γi > 0. Therefore, (53a) can
never hold for ai 6= 0. Thus, we conclude that (53a) and
(53b) can be simultaneously satisfied only if a = 0N .

Therefore, for ˙̃X to remain in E, X̃ must stay in set
S ⊂ E, where

S =


X̃ ∈ M̃ : X̃ =


0N

[γ]b

−[β]b

0M

 , b ∈ RN


. (55)

Furthermore, it must hold M ⊆ S. Then, in order to

characterize M , we assume X̃ ∈ S and impose ˙̃X ∈ S.
This translates into the following

˙̃X = Ã(X̃)


0N

[γ]b

−[β]b

0M

 =


C−1t [γ]b

0N

0N

0M

 .

Therefore, ˙̃X ∈ S if and only if C−1t [γ]b = 0N . As γi 6=
0,∀i ∈ D, it must hold that b = 0n and hence X̃ =
03N+M . This implies that the largest invariant set M ⊆
E is M = {03N+M}. By invoking Lemma 1, it can be

concluded that the state X̃ asymptotically converges to
the origin. �

Remark 5 (PnP design of local controller and
comparison with [29]) The state feedback controller
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(19) has a decentralized structure. Recall from (39) that
the feedback gains are dependent only on the DGU filter
parameters Rti and Lti but not on Cti (which is assumed
to be lumped with line capacitances). This enables PnP
operations as described in [29], for example, when a new
DGU is plugged-in, its controller can be designed with-
out knowing any other parameter of the microgrid and
no other controller in the microgrid needs to be updated
in order to preserve voltage stability. In the presence of
P loads, the condition (40) must be satisfied by the in-
coming DGU, failing which the plug-in must be denied.
Therefore, the states of the incoming DGUs should be
sufficiently close to the origin before a plug-in operation
in order to ensure the stability of the network. In prac-
tice, this can be achieved by manually controlling the
DGU offline before connecting it to the network.

We highlight that inequalities (39) can always be veri-
fied. This is in contrast with the PnP design procedure
in [29] based on LMI optimization problems that might
be numerically infeasible [28]. An advantage of the LMI
formulation, however, is the possibility to incorporate
additional robustness and performance constraints in
the design problem. In this respect, inequalities (39) give
a backup procedure for control design in case of LMI
faliure.

Remark 6 (Robustness to uncertainty in filter pa-
rameters) The electrical parameters Rti and Lti of the
DGU filter depend on operating conditions, environmen-
tal factors, and methods used for their estimation. As a
result, they are affected by uncertainties often specified
as nominal values along with percentage variations. The
explicit inequalities (39) allows one to take into account
the worst-case scenario, enabling design of controllers
robust to bounded parametric uncertainties.

The preceding stability analysis was conducted in the
presence of constant-power loads, which essentially are
a source of nonlinearity and restrict passivity of a DGU
Σ̃DGU[i] to a region X[i] in the state space. However, in

their absence, stronger results can be obtained which are
summed up in the following remark.

Remark 7 (Stronger results for ZI loads) If all the
network loads are solely ZI, then, the nonlinear admit-
tance ỸLi(x̃[i,1]) = 0 (see (28)) for i = 1, ..., N . There-
fore, from (50), all the controlled DGUs are rendered pas-
sive in the entire state space. Furthermore, we recall that

the storage functions Ṽ[k](x̃[k]), k ∈ D ∪ L are radially
unbounded and positive definite (see (37) and (38)). One
can therefore use Remark 1 and subsequently, Theorem
3 to conclude that the origin of (29) is globally asymp-
totically stable.

In the remainder of this section, we discuss the microgrid
behavior when a local P load injects power into the grid.
In such a scenario, ILPi(Vi) < 0 (see (16)) and hence

P ∗Li < 0, i ∈ D. Under the assumption that the voltages
are positive, from (28) and Assumption 1, the inequal-
ity (45) is automatically verified. This facilitates the de-
sign of the local controller. However, power generating
loads can change the direction of Iti (see Figure 5) and
imply the absorption of power by the DGU. Although
our model allows for it, in practice DGUs need to be
equipped with batteries to absorb power. Next, we char-
acterize power injections by P loads that do not cause re-
versal in the DGU filter currents, atleast in steady state.

Lemma 2 (Upper bound on power injection) As-
sume that the DCmG is in steady state for constant inputs
Vref,i and ĪLi and let Assumption 1 holds. Let Īti, i ∈ D
and Īl, l ∈ Ni ⊂ L be the equilibrium values of DGU fil-
ter currents and line respectively (see Figure 5). Then,
Īti ≥ 0 if

|P ∗Li| ≤ Vref,iĪ∗i + V 2
ref,iYLi + Vref,iĪLi, (56)

where Ī∗i =
∑
l∈Ni

BilĪl.

PROOF. When a local P load injects power, ILPi(Vi) <
0. On applying KCL at PCCi, we have

Īti =
∑
l∈Ni

BilĪl + YLiVref,i − V −1ref,i|P
∗
Li|+ ĪLi.

By direct calculation, using the positivity of Vref,i and
Īti, one obtains (56). �

4 Simulation results

DGU 1

DGU 2

DGU 3

DGU 4

DGU 5

DGU 6

Fig. 6. Simplified representation DCmG composed of 6
DGUs. The connecting power lines are represented by the
edges, where the green and red edges, respectively, represent
plug-in and-out of DGUs.

In this section, we aim to validate the developed
passivity-based framework for analyzing the stability
of DCmG through simulation studies conducted in
PSCAD. We consider a scenario similar to one pre-
sented in [29]: a meshed DCmG composed of 6 DGUs
(see Figure 6) with non-identical electrical parameters.
However, different from [29], where constant-impedance
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Fig. 7. Performance of the implemented decentralized controllers during the plug-in of DGU 6 at time t = 4 s.
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Fig. 8. Performance of the implemented decentralized controllers when a step change in the P component of the ZIP load at
PCC6 occurs (at time t = 8 s).
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Fig. 9. Performance of the implemented decentralized controllers during the unplugging of DGU 3 at t = 12 s.

loads are used, we assume ZIP loads with powers P ∗Li,
i = 1, . . . , 6 always fulfilling (40). In our experiments,
voltage references Vref,i, i = 1, . . . , 6 to be tracked at
each PCC are set to slightly different values and thus,
allowing current flow through power lines in the asymp-
totic regime. We also highlight that local controllers Ki

in (19) have been selected so as to belong to set Z[i]

defined in (39). In the following discussion, we evalu-
ate the voltage stability of the DCmG when DGUs are
plugged-in/-out and power consumption of loads are
changed.

Plug-in of a new DGU: At the beginning of the simula-
tion, DGUs 1-5 are connected together while DGU 6 is
isolated. At time t = 4 s, we connect Σ̂DGU[6] to Σ̂DGU[1] and

Σ̂DGU[5] (see the green edges in Figure 6). As mentioned

in Remark 5, since local regulator design hinges on pa-
rameters of the corresponding DGU only, no update of
any controller in the DCmG is required. In Figure 7,
we notice very small deviations of the output voltages
at PCCs 1, 5, and 6 from their references around the
plug-in time. A comparison with the simulation results
presented in [29] (for ZI loads only) reveals that voltage
profiles are very similar in spite of the presence of the
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constant-power component of the loads.

Robustness to step change in the P component of a ZIP
load: At t = 8 s, the power consumption P component of
ZIP load at PCC 6 changes from 250W to 1000W. This
sudden change in load causes an instantaneous voltage
drop at PCC6 as shown in Figure 8c. Figure 8 shows
the voltages at PCC 1, 5, and 6 around t = 8 s. After
short transients, oscillations are absorbed and voltages
are restored to their reference values. This depicts the
robustness of the control scheme in presence of uncon-
trolled load variations.

Unplugging of a DGU: Finally, at time t = 12 s, we sim-
ulate the disconnection of Σ̂DGU[3] (marked in red in Fig-

ure 6). As mentioned previously, since the bounds char-
acterizing set Z[i] in (39) do not depend on power-line
parameters, there is no need to update the controllers
of DGUs connected to Σ̂DGU[6] (in this case, DGUs 1 and

4). As shown in Figure 9, the voltages at PCCs 1 and
4 around the unplugging time, exhibit small deviations
from the corresponding references and are promptly re-
stored by the control actions.

5 Conclusions

We presented a passivity-based approach to the problem
of voltage stability in DCmGs. Different from existing
works [30, 29, 35, 11], our DCmG model comprised of
dynamic RLC lines and ZIP loads. We provided explicit
inequalities on control gains along with other sufficient
conditions to guarantee voltage stability in closed-loop
DCmG. The control design is fully decentralized and
allows removal and addition of DGUs in a PnP fashion.

Many interesting future research directions can be taken.
The first one is to consider the application of proposed
passivity-based framework to AC microgrids. Another
one is the inclusion of more sophisticated load models
like thermal loads, electric vehicles, etc. Finally, the com-
positional property of passivity can be exploited for de-
sign of hierarchical control scheme to achieve advanced
objectives like current and power sharing, and microgrid
optimization.
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