Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Dimension-free Information Concentration via Exp-Concavity
 
conference paper

Dimension-free Information Concentration via Exp-Concavity

Hsieh, Ya-Ping
•
Cevher, Volkan
2018
Proceedings of Algorithmic Learning Theory
Algorithmic Learning Theory (ALT) 2018

Information concentration of probability measures have important implications in learning theory. Recently, it is discovered that the information content of a log-concave distribution concentrates around their differential entropy, albeit with an unpleasant dependence on the ambient dimension. In this work, we prove that if the potentials of the log-concave distribution are exp-concave, which is a central notion for fast rates in online and statistical learning, then the concentration of information can be further improved to depend only on the exp-concavity parameter, and hence, it can be dimension independent. Central to our proof is a novel yet simple application of the variance Brascamp-Lieb inequality. In the context of learning theory, our concentration-of-information result immediately implies high-probability results to many of the previous bounds that only hold in expectation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

hsieh18.pdf

Access type

openaccess

License Condition

CC BY

Size

315.74 KB

Format

Adobe PDF

Checksum (MD5)

48b6b184c9ab28dd02c95b430f9ffc5f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés