Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Chemical machine learning with kernels: The key impact of loss functions
 
working paper

Chemical machine learning with kernels: The key impact of loss functions

Nguyen, Van Quang  
•
De, Sandip  
•
Lin, Junhong  
Show more
2018

Machine learning promises to accelerate materials discovery by allowing computational efficient property predictions from a small number of reference calculations. As a result, the literature spent a considerable effort in designing representations that capture basic physical properties so far. In stark contrast, our work focuses on the less-studied learning formulations in this context in order to exploit inner structures in the prediction errors. In particular, we propose to directly optimize basic loss functions of the prediction error metrics typically used in the literature, such as the mean absolute error or the worst case error. We show that a proper choice of the loss function can directly improve the prediction performance in the desired metric, albeit at the cost of additional computations during training. To support this claim, we describe the statistical learning theoretic foundations and provide numerical evidence with the prediction of atomization energies for a database of small organic molecules

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NDLC_IJQC.pdf

Access type

openaccess

Size

420.82 KB

Format

Adobe PDF

Checksum (MD5)

3a6837355769200669611f6b64bbfc4a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés