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ABSTRACT

A long-standing question in biology is whether multipotent somatic stem and progenitor cells

(SSPCs) feature molecular properties that could guide their system-independent identification.

Population-based transcriptomic studies have so far not been able to provide a definite answer,

given the rarity and heterogeneous nature of these cells. Here, we exploited the resolving

power of single-cell RNA-sequencing to develop a computational model that is able to accu-

rately distinguish SSPCs from differentiated cells across tissues. The resulting classifier is based

on the combined expression of 23 genes including known players in multipotency, proliferation,

and tumorigenesis, as well as novel ones, such as Lcp1 and Vgll4 that we functionally validate

in intestinal organoids. We show how this approach enables the identification of stem-like cells

in still ambiguous systems such as the pancreas and the epidermis as well as the exploration

of lineage commitment hierarchies, thus facilitating the study of biological processes such as

cellular differentiation, tissue regeneration, and cancer. STEM CELLS 2017; 00:000–000

SIGNIFICANCE STATEMENT

This novel transcriptomics-based approach exploits the increased molecular resolution provided

by single-cell RNA-sequencing to accurately identify somatic stem and progenitor cells (SSPCs)

across a wide range of tissues. The developed classifier uniquely combines expression informa-

tion of only few genes, suggesting that SSPCs share specific molecular properties across tissues.

The method provides a valuable resource to identify SSPCs and order them across differentia-

tion stages in yet poorly characterized systems. Among its downstream applications we envi-

sion, besides the detection of novel stem-like cells, the estimation of the fraction of SSPCs in a

heterogeneous sample or, in an expanded version, the detection of highly malignant cells in

tumors.

INTRODUCTION

The identification and molecular characterization

of multipotent somatic stem and progenitor cells

(SSPCs) is of fundamental interest for understand-

ing development, homeostasis, and regeneration

of complex multicellular organs. In addition, the

study of cells with multipotent capacity provides

novel regenerative therapy opportunities [1] as

well as new insights into disease mechanisms or

treatments [2]. While hematopoietic, neural, epi-

dermal, and gastrointestinal stem cells have

already been phenotypically well-characterized, it

has proven very challenging to identify SSPCs and

establish their hierarchy in a broad range of other

systems, including the lung, kidney, mesenchyme,

heart, liver, and pancreas [3–5]. This is largely

because such SSPCs tend to constitute small and

heterogeneous populations that reside in tissues

of complex composition and lack universal

markers, which leads to technological or experi-

mental limitations such as population-level molec-

ular measurements and tedious in vivo functional

assays [6].

Recent advances in single-cell genomics have

revolutionized our ability to reveal the composi-

tion of individual tissues or specific developmen-

tal patterns [7–10]. To determine which single-

cell RNA-sequencing (scRNA-seq)-assessed cells

are stem-like, studies tend to cluster or arrange

them along a differentiation time-line (termed

“pseudo-time”) and attribute labels to groups

based on marker gene expression [8–11]. This is

an iterative and highly variable process, as it is

sensitive to particular algorithmic (clustering,

graph walking etc.) as well as biological (markers,

cell stages) choices. The recently developed

StemID alleviates these issues by streamlining

the procedure, but it is only applicable to cells
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across multiple differentiation stages and not to homogeneous

single-cell populations [12]. For such cases, one is obliged to

leverage on the knowledge accumulated in other systems to

assign functionality. To formalize such an approach, we developed

a cross-tissue SSPC identification method.

A wide range of efforts have already been directed toward

delineating a stem cell (SC) molecular signature (referred to

as “stemness” signature) [13–19]. For example, over 100

stemness-related resources, including curated gene sets, com-

putationally derived signatures, and transcription factor (TF)

targets have been collected and made centrally available

through the online platform StemChecker [20]. Importantly,

while there is substantial overlap between the individual

resources, there is by no means a consensus on the molecular

program that underlies the core properties of SSPCs [20] or a

universally accepted marker gene set that facilitates their

identification [6]. This may be because SSPCs may only be

captured through a combination of system-specific features

rather than single marker genes [4, 16, 21]. At the same time,

while scRNA-seq studies revealed cell hierarchies and novel

cell types within systems of interest [7–10, 22–24], cross-

study analyses have so far only focused on cell cycle stage

identification [25]. In this study, we aimed to bridge this gap

by exploring how well multipotent SSPCs could be identified

and distinguished from differentiated cells based on scRNA-seq

data. We demonstrate here that a lasso logistic regression-

based model is able to accurately identify various SSPCs by

using a unique combination of genes that together reach good

cross-system performance.

MATERIALS AND METHODS

In our approach, we carefully considered (a) the quality/

diversity of the training data, (b) the genes included as

features in the training, (c) the algorithm used, and (d) the

normalization applied prior to training, exploring several

options in order to obtain a robust model.

Datasets

We used the following data, also listed in Supporting Informa-

tion Table S1: (1) as positive SSPCs, (a) as train and test data,

we included quiescent and activated neural stem cells

assessed after injury (qNSCs and aNSCs, d1) [10], macrophage

dendritic cell progenitors (MDPs, d2) [22], hematopoietic stem

cells (HSCs, d3, and d4) [26, 27] and (b) as independent test

data quiescent and activated NSCs (qNSCs and aNSCs, d9)

[28], mesenchymal stem cells (MSCs, d10) [29], short- and

long-term HSCs (stHSCs and ltHSCs, d11–12) [30], intestinal

stem cells (ISCs, d13) [9]; (2) as negative data (non-SSPCs), (a)

as train and test data, we included astrocytes (STR and CTX,

d5) [10], T cells (d6) [31], AT2 lung epithelial cells (AT2 cells,

d7) [8], and adult non-stem neuronal cells (neuro, d8) [23]

and (b) as independent test data non-stem intestinal cells

(REG41 and LGR5-, d14–15) [9], lymphoblastoid cell lines

(LCLs, d16) [32], adult non-stem neuronal cells (neuro, d17)

[33] as well as adult hepatocytes and endothelial cells isolated

from human liver (d33) [34]. To test predictions on cells

with a gradually decreasing level of stemness, we used: (a)

oligodendrocytes (Oligo, d18), neuroblasts (NB, d19), neural

transit amplifying cells (TAPs, d20), activated and quiescent

NSCs (aNSCs and qNSCs, d21–22); (b) megakaryocyte progeni-

tor cells (CD150- MkPCs, d23); (c) dendritic cell precursors

(PreDCs, d24) and common dendritic cell progenitors (CDPs,

d25) [22]; (d) an unsorted mixture of cells progressively

loosing progenitor status from embryonic day 14 over 16 to

18 (E14, E16, and E18, d26–27) [8]. To keep the fraction of

positive and negative cells balanced, we selected only a

(random) subset of cells among those that were part of large

datasets: d7, d8, and d11–12 [23, 30, 31]. Finally, we used

dissociated mouse epidermis cells [35] as well as human

pancreas cells [12, 36, 37] for generating novel predictions.

Data Normalization

We used the expression estimates provided by the individual

studies, which were publicly available through Gene Expression

Omnibus [38], irrespective of the underlying experimental and

computational methods that they were based on (Supporting

Information Table S1). For developing the stem and progenitor

cell identification model, due to the highly heterogeneous

nature of scRNA-seq, exacerbated by both experimental and

data processing methodological differences among the studies

as well as variability across distinct biological sources, we did

not use these raw expression estimates. Rather, we applied

rank-based normalization and reduced the dynamic range of the

data by using quantiles instead of ranks or expression estimates.

We ran the lasso logistic regression model described below on a

range of ranked data (for non-zero data points: 10, 20, 30, 50,

100, 500, 1,000, and 1,500 quantiles, with zero as an additional

lowest rank in each set; plus the full ranked matrix, Supporting

Information Fig. S2A), finding that differences in the binomial

deviances were minimal. We further used ventiles (20-

quantiles), which showed minimal average values, for all

reported results.

To generate the t-SNE maps [39] with the R library Rtsne, we

used log-normalized expression estimates of all genes having

maximal log expression across all cells in the datasets� c,

where c was calculated for each dataset to equal the third quar-

tile of log expression estimates of a reference gene set (house-

keeping genes and ERCC spike-ins when available) expressed

in� 50% of all cells. Cells in which a high fraction (� third

quartile1 2*standard deviation across all cells) of reference

genes were not measured (50) were removed from the analysis

in a first step.

Model Training and Testing

We trained lasso logistic regression (cv.glmnet � nfolds5 10

type.measure5“deviance” lower.limit5 0 family5“binomial”

alpha5 1�), elastic-net logistic regression (cv.glmnet �

nfolds5 10 type.measure5“deviance” lower.limit5 0 family-

“binomial” alpha5 0.5�), and random forest (randomForest

�importance5 T proximity5 T ntree5 1000�) models on

two thirds of d1–8 and tested them on the remaining one

third as well as on the full d10–28 (Supporting Information

Fig. S2B, S2C; Table S1) datasets, using the R libraries glmnet

[40] and randomForest [41]. We used a set of 4,528 genes

commonly annotated (but not necessarily expressed) in all

train and test data (d1-d28) (All.g; Supporting Information

Table S3) as starting features. We define commonly annotated

genes as human-mouse orthologous genes with shared gene

symbol across species and for which expression information

(even if equal to 0) is present across all used datasets. For
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comparison, we also trained: (a) lasso logistic regression models

(cv.glmnet � nfolds5 10 type.measure5“deviance” low-

er.limit5 0 familiy5“binomial” alpha5 1�) using as features

only genes part of previous population-derived stemness signa-

tures—PluriNet [42] and Wong et al. [43] (Lasso.LogReg, l1.Pluri-

Net.g, and l1.Wong.g); (b) logistic regression models (glm

�family5“binomial”) using as features only genes part of previ-

ous population-derived stemness signatures—PluriNet [42] and

Wong et al. [43] or retained from the full set of 4,528 genes after

l1 (lasso) regularization (LogReg, PluriNet.g, Wong.g, and SSPCI.g);

(3) a logistic regression model (glm �family5“binomial”�)

using as features the predicted probabilities for a cell to be in

G1 or G2/M phase of the cell cycle [25] (Fig. 2A, 2C, Supporting

Information Fig. S2B, S2C and Table S3). We also calculated the

average correlation between a cell’s gene expression and the

average expression of known positive SSPCs (using log-

normalized expression estimates of the 4,528 shared genes and

Spearman’s rank correlation coefficient), exploring how well

this measure can be used to classify cells (Fig. 2A, 2C). ROCR

curves were generated to visualize the performance of all dis-

tinct trained models on both the test and the independent test

datasets using the ROCR R package (performance

�”tpr”,”fpr”�) [44].

The final reported model (referred to as SSPCI), was trained

using lasso logistic regression and cross-validation, as imple-

mented in the R library glmnet [40] (cv.glmnet � nfolds5 10

type.measure5“deviance” lower.limit5 0 familiy5“binomial”

alpha5 1 �). We generated predictions on new data using the

function predict with the parameters � pred.type5 response�

for obtaining fitted probabilities of class 1, referred to as

“stemness probabilities.” We used �pred.type5“class”

s5 lambda.1se � for binary predictions (15 SSPC, 05 non-

SSPC), corresponding to the largest value of lambda for which the

error is within one standard error of the minimum. Stemness

probabilities were displayed using the function beanplot [45] (�

what5 c(1,1,1,0) overallline5 “median” log5““bw5“nrd0” �).

The model was trained on two thirds of the data by 10-fold-cross-

validation and then tested on the remaining one third of the data

(not used for parameterization) as well as the completely inde-

pendent test data. Feature selection was automatically per-

formed by the lasso regularization, which sets the coefficients of

a large number of genes to zero. The intersection of features

retained >10% of the time (>10 across 100 repetitions) was fur-

ther used as final feature set, corresponding to 23 genes in the

final model. By constraining the model with �lower.limit5 0�,

we only obtained positive coefficients, more easily biologically

interpretable as genes associated with SSPCs. We refer to the

probability of being classified as positive as the “probability (p) of

stemness” and to the cells predicted as positives (i.e., p� .5) as

“somatic stem and progenitor cells” or “SSPCs” throughout the

manuscript.

Gene Sets

One constraint of the initial training gene set is that it should

ideally contain universally expressed orthologous genes across

mouse and human, which are likely to be present in a new pre-

diction dataset. The intersection of all our train and test data

(d1-d28, irrespective of their expression level) resulted in 4,528

genes (All.g; Supporting Information Table S3), the majority of

which we assume is likely to be universally measurable and thus

present in future datasets. We assessed the robustness of the

obtained gene signature to variations in the initial starting gene

set by altering the test data (removing one or two datasets, and

thus starting with 4.841, 6.803, and 7.317 genes, respectively),

or by subsampling (10 repetitions) from the largest (7.317

genes) initial gene set. The vast majority (19 of 23) of signature

genes were also retained in �80% of these alternative starting

sets (Supporting Information Fig. S5C, Table S4). Moreover,

among the top 10 signature genes ordered by logistic regression

coefficient (and thus relative importance), 9 were retained in

>80% of all tested models. Together, these results strongly sug-

gest that the gene signature used by the classifier is robust.

Furthermore, we used genes part of previous population-

derived stemness signatures—PluriNet [42] and Wong et al. [43]

(PluriNet.g and Wong.g) to test how informative they are in sepa-

rating scRNA-seq assessed SSPCs from non-SSPCs, as well as gene

sets previously specifically associated with ISC function (1: previ-

ously used ISC marker genes, as listed on Wikipedia on 03.12.2015,

ISC.g1 and 2: Munoz et al. ISC signature genes, ISC.g2 [46]), genes

annotated with the “cell cycle” GO Term (GO:0007049) (Cyc.g),

genes annotated with various differentiation and stemness-related

terms, including “differentiation,” development,” “stem cell main-

tenance,” “stem cell development,” stem cell division,” “stem cell

commitment” (“GO:0030154,” “GO:0048468,” “GO:0019827,”

“GO:0048864,” “GO:0017145,” “GO:0072089,” “GO:0048865,”

“GO:0048863”) (Diff.g), and genes annotated with the

“Metabolism” GO Term (GO:0008152) (Metab.g) to validate

the biological relevance of the reported stemness probability

(Supporting Information Table S3). We calculated the Spearman’s

rank correlation coefficient (rho) of the stemness probability with

the expression level of genes in these sets. We found that the

correlations obtained for the two ISC-specific gene sets were signif-

icantly higher than those obtained for the background or for all

other gene sets (p� .005 for any of the comparisons, Wilcoxon

rank sum test), suggesting that our approach indeed uncovered

genes that are functionally relevant for stemness.

To identify stemness-specific genes in the intestinal orga-

noids [9] (Supporting Information Table S3, ISC.g3), in the

human pancreas [12, 36] (Supporting Information Table S2),

and in the mouse epidermis [35] (Supporting Information

Table S2) based on stemness probability, we took a two-step

approach: (a) we only included genes expressed (>0 read

counts) in �60% of the predicted positives and �20% of the

predicted negatives and (b) we only included genes with a log

expression estimate highly correlating (Pearson’s r, FDR 0.05)

with the stemness p. Finally, we analyzed the properties of

genes retained by SSPCI (SSPCI.g) using StemChecker as well

as gene ontology (Supporting Information Table S4).

We also used a list of “housekeeping” genes, expected to

be universally expressed at similar levels across diverse

scRNA-seq data based on their presence (>50% of cells) and

high (FDR 0.05) Gaussian rank correlation with ERCC spike-ins

in �2 datasets (Supporting Information Table S3).

Other Methods

Comparisons of stemness probabilities and expression values

were performed using one-sided Wilcoxon rank sum tests and

the significance of overlaps was assessed using one-sided Fisher’s

exact tests. The gene ontology enrichment was performed using

the topGO library, the �elimCount� method and a p value cut-

off of .001. Overlaps with population-derived signature gene sets

were assessed using the webserver StemChecker [20]. Cell cycle

Schwalie, Moran, Huelsken et al. 3
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stages were predicted using Cyclone with default parameters and

based on known markers [25]. All analyses were performed using

R version 3.1.1 and Bioconductor version 3.0.

For the intestinal organoid analyses, statistical computa-

tions were performed using GraphPad Prism6. Experimental

data are presented as mean6 standard deviation. Statistical

significance was assessed by two-tailed unpaired Student’s t

test; the data were considered not significant (ns) for p> .05.

Mouse Model

Animal experiments were performed in accordance with pro-

tocols approved by the “Service de la Consommation et des

Affaires V�et�erinaires” of Canton Vaud, Switzerland. APCmin

mice were described previously [47]. This strain was back-

crossed onto C57BL/6 for at least 10 generations.

Isolation of Intestinal Tissue and Organoid Culture

Organoid cultures were established from total intestinal crypt

preparations of APCmin mice as described previously [48].

Freshly isolated small intestines were incised along their

length and villi were removed by scraping. Then, the adeno-

mas were isolated and after several washes, the tissue was

incubated in PBS/EDTA (Sigma-Aldrich, St. Louis, MO, US)

(2 mM), pH8 for 5 minutes at 48C. Gentle shaking removed

remaining villi, and intestinal tissue was subsequently incu-

bated in phosphate-buffered saline (PBS)/EDTA (2 mM), pH8

for 30 minutes at 48C. Upon dissociation, samples were

passed through a 70 lm filter and washed four times in cold

Advanced Dulbecco’s Modified Eagle’s Medium (DMEM)/F12,

(Gibco, NY, US) media. Afterward crypt cells were embedded

in Matrigel (BD Biosciences, San Jose, CA, US) and plated in

400 ll of organoid media (Advanced DMEM/F12 with B27,

N2, and N-acetylcysteine; containing growth factors EGF 50

ng/ml (Invitrogen, NY), R-Spondin 1 mg/ml, Noggin 100 mg/ml)

into 24-well plates at a concentration of 500 crypts per well.

Growth factors were added every other day and the entire

medium was changed every 4 days. Secondary organoid cul-

ture was achieved by removing the organoids from Matrigel

followed by mechanical dissociation with a glass pipette, gen-

tle centrifugation (800 rpm), and then transferred to fresh

Matrigel. Serial passaging (passage 1, passage 3, and passage

4) of shRNA-expressing organoids was compared to control

organoids.

Plasmids, shRNAs, and Protein Production

Lcp1 (50 TTGAAGAGATCGTCGGTGTTGG 30) and Vgll4 (50

TCACTGCTGTTCTTAGTCAGGG 30) were suppressed by shRNAs

with the indicated antisense oligos in a MIR30 backbone

expressed from a lentiviral vector (pSM2, Openbiosystems).

The expression plasmid for R-spondin1 was a kind gift from

Calvin Kuo (Standford University, U.S.) and this and Noggin

proteins were produced as published [49] using proteinG or

Ni-NTA purification, respectively.

Cell Culture and Selection of shRNA-TurboRFP Gene

Suppression Cells by Flow Cytometry

The mouse colon carcinoma-derived cells CT26 were cultured

in DMEM 10% fetal bovine serum (FBS, Invitrogen, NY, US).

The shLcp1-TurboRFP, shVgll4-TurboRFP, and their respective

controls were generated by lentiviral transduction. To this

end, we generated a lentiviral vector driving TurboRFP

expression that enables identification of positive cells by fluo-

rescence-activated cell sorting (FACS). TurboRFP1 cells were

sorted from a population of transduced cells by flow cytome-

try (FACSAria II; Beckton Dickinson (BD) Biosciences, Franklin

Lakes, NJ, USA, or MoFlo; Dako, Hamburg, Germany).

Lentiviral Production and Transduction

Lentiviruses were generated in 293T cells using third genera-

tion lentivirus packaging vectors, and virus particles were con-

centrated by ultracentrifugation for 2 hours at 22,000 rpm.

Lentiviral titration was performed in 293T cells. Cell lines were

infected with lentiviruses overnight at 378C. Colon carcinoma

cell lines (CT26) and murine intestinal organoids were infected

by lentiviral transduction as published [50]. Lentiviral infection

was performed after 5 minutes Trypsin-EDTA (378C) organoid

dissociation. After several washes with 5%FBS-PBS, the cells

were spun with the lentiviral particles at 1,300 rpm for 20

minutes and incubated with organoid media for 2 hours at

378C. The pellet of single cells was then embedded in Matri-

gel and fresh organoid medium was added. Single cells gave

rise to organoids after 10 days of culture. Images and qRT-

PCR analyses were performed between day 13 and 17. Serial

passaging was then performed at the following time points:

P1 day 18, P2 day 28, P3 day 35, and P4 day 40.

Real-Time-qPCR

RNA was prepared using the mini or micro RNA kit (Qiagen,

Germany) from organoids. cDNAs was synthesized using

Superscript-II reverse transcriptase (Invitrogen, NY, US) and

oligodT priming. qPCR was performed in a StepOnePlus ther-

mocycler (Applied Biosystems Thermo Fisher, NY, US) using

the Power SYBR green PCR Master Mix (Applied Biosystems,

Thermo Fisher, NY, US) and the specific primers are listed

below. Relative gene expression was determined by the com-

parative CT method.

Murine

gene Forward primer Reverse primer

Anpep CCTGTAGCAAAGATGTGTGGATT GGATGAGATTGGCAAAGGAGAAA

Lgr5 CTCCACACTTCGGACTCAACAG AACCAAGCTAAATGCACCGAAT

MKi67 GATGGAAGCATTGTGAGAACCA CCTGCTCTTCCACAGATTCAAG

Tff3 CTTTGACTCCAGTATCCCAAATG TGGCTGTGAGGTCTTTATTCTTC

Vdr AGGGACGTATCTTCAAACTCCA AACGCATGATCAGCAAGAAGTA

Wwp1 ATGATGGCCAGTCTTCAAAAGT GACATCCTACCTGAAAGCAACC

shLcp1 AACAAAGCCCTGGAGAATGAC TGTTGATCGTTCTCTCGTCAA

shVgll4 CCACCTGTACGCATCTCTCC GCCTGTGTCACTGCTGTTCTTA

RESULTS

Accurate Identification of SSPCs Across Biological

Systems

We collected diverse publicly available scRNA-seq data across

biological systems and germ layers (Fig. 1, Supporting Infor-

mation Fig. S1; Table S1, and Methods), using only two-thirds

of the cells from each dataset (138 positives consisting of

mostly stem cells but also early progenitors, including neural

and hematopoietic stem cells as well as MDPs, and 170 nega-

tives consisting of differentiated cells such as neuronal cells, T

cells, and lung epithelial cells) for 10-fold-cross validation-

4 Single-Cell RNA-Seq-Based Stem Cell Identification
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based feature (gene) selection and parameterization. We sep-

arately retained a test set (one-third, 69 positives and 85 neg-

atives) completely untouched during training and also used

completely independent (467 positives and 554 negatives,

including distinct studies and germ layers) test data (Fig. 1,

Supporting Information Table S1 and Methods). We note that

for simplicity, we refer to the probability of being classified as

positive as the “probability (p) of stemness” and to the cells

predicted as positives (i.e., p� .5) as “somatic stem and pro-

genitor cells” or “SSPCs” throughout the article.

We evaluated a broad range of models on both test and

independent test data and found that de novo lasso logistic

regression (referred to as somatic stem and progenitor cell

identifier, SSPCI, hereafter) showed best overall performance,

followed by de novo elastic-net logistic regression and de

novo randomForest (Fig. 2A–2D, Supporting Information Fig.

S2B, S2C and Methods). While average correlation-based and

logistic-regression models trained on population-derived stem-

ness gene sets (both with or without regularization) per-

formed only marginally inferior to SSPCI on the test samples

(Fig. 2A), they showed worse performance on the indepen-

dent test samples (Fig. 2C). Remarkably, SSPCI identified 89%

of all SSPCs and 97% of all non-SSPCs as such (Fig. 2B, 2D,

Supporting Information Table S1).

Importantly, SSPCI was also able to identify SSPCs in

completely independent biological systems such as the mouse

intestine [9], corresponding to a germ layer not originally cov-

ered in the training data (Fig. 2D, 2E, Supporting Information

Fig. S2D). In particular, LGR51 ISCs were attributed signifi-

cantly higher stemness probabilities than the LGR5- cells (Fig.

2E, p5 10232, Wilcoxon rank sum test) and only 17 (of a total

of 229) LGR5-cells were classified as positives. All of the latter

were transcriptionally similar to the LGR51 population, as

visualized in a 2D t-SNE projection [39] (Fig. 2E, Supporting

Information Fig. S2D). These cells likely represent highly prolif-

erative and multipotent transit amplifying cells and are also

partially characterized by high expression of Hopx and Gnl3,

other commonly used stem cell markers (Fig. 2E, Supporting

Information Fig. S2D) [46, 51, 52]. It is thus possible that

some of these misclassification events do not represent false

positive predictions, as these multipotent cells may genuinely

be very close to ISCs and may thus also be categorized as

SSPCs [5]. As an additional control, we tested the classifier on

human liver data and confirmed that neither adult hepato-

cytes nor endothelial cells were classified as positives (Sup-

porting Information Fig. S2E, S2F).

We next asked whether the cell cycle stage of the cells

influences the performance of the classifier, given that prolif-

eration and the ability to self-renew by cell division are intrin-

sically linked to stemness. To do so, we used a recently

developed scRNA-seq-based method to attribute each cell to

one specific cell cycle stage (G1, G2/M, S or if the assignment

is ambiguous, na) [25]. This analysis revealed that across all

our datasets, SSPCs did not show an association with a spe-

cific cell cycle stage (Fig. 2E, Supporting Information Fig. S2G,

S2H). Furthermore, we found that a linear regression model

trained using only the probabilities of cells being in one of

the three cell cycle stages as features performs very poorly in

identifying SSPCs (Supporting Information Fig. S2B, S2C). Thus,

we conclude that SSPCs cannot be identified solely based on

their cell cycle stage.

De Novo Identification of SSPCs in scRNA-Seq

Dissected Tissues

We subsequently tested the power of our approach to resolve

still ambiguous systems that were recently dissected by

scRNA-seq: the human pancreas [12, 36, 37] and the mouse

epidermis [35]. In the pancreas, we found that virtually all

Figure 1. Classification strategy. Datasets used for training and testing of the models, see Supporting Information Table S1 for full
description. Abbreviations: SSPCs, somatic stem and progenitor cells; SCs, stem cells; LCLs, lymphoblastoid cell lines.
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tested endocrine cells (alpha, beta, gamma, and delta) had

very low stemness probabilities and were classified as nega-

tives (Fig. 3A–3E). This result is in line with the notion that

proliferation of differentiated cells is the main mechanism

active in the islets [53, 54]. In contrast to endocrine cells, a

substantial (10%–60%) percentage of ductal, acinar, and most

notably stellate cells showed high stemness probabilities and

were predicted positive (Fig. 3A–3E). Importantly, these

results were highly consistent across three independent stud-

ies (Fig. 3A–3E) [12, 36, 37], and individuals [36] (Supporting

Information Fig. S3A, S3B), demonstrating the robustness of

our approach to laboratory-induced variability. Our findings

are compatible with the increased clonogenic capacity and

phenotypic plasticity of these three cell types compared to

endocrine cells [55]. They also support the notion that stellate

cells are major contributors to pancreatic maintenance and

repair [56, 57], as our prediction suggests that the stellate cell

fraction contains most SSPCs in this system. Interestingly,

both disease (type I and II diabetes, respectively), and age

seems to alter the SSPC proportion in the pancreas, with a

higher fraction of stem-like cells in affected adults as well as

healthy children compared to healthy adults (Fig. 3E). This is

consistent with the observation of increased de-differentiation

of alpha and beta cells in diabetes patients compared to adult

controls [37].

A second system that we examined is the mouse epider-

mis. Using scRNA-seq of thousands of epidermal cells, our

predictor revealed almost twice as many SSPCs among basal

cells compared to all other cells (Fig. 3F, left), and interest-

ingly, no difference in the fraction of predicted SSPCs

between basal cells expressing at least one of the epidermal

stem cell markers Cd34, Lgr5, Lgr6, Gli1, Lrig1, Krt14, and

those not expressing any (Fig. 3F, right). Surprisingly, when

examining which subclass of basal cells is predicted to contain

most SSPCs, we found that it is the interfollicular epidermis

(IFE), with 7%–13% of stem-like IFE basal cells compared to

only �4% of bulge cells (Fig. 3G). We thus focused on the IFE

area and examined where high scoring cells are positioned on

the previously estimated differentiation trajectory [35]. We

found that these cells are indeed largely located at the root

of the trajectory (Fig. 3H). Consistently, our predicted

stemness probability was significantly negatively correlated to

previously estimated differentiation pseudotime values (Spear-

man’s rho520.417, p< 1025). In sum, our analysis supports

the notion that there is no specific subcluster of SSPCs in the

epidermis [58], as this system appears characterized by

Figure 2. Accurate classification of somatic stem and progenitor cells. Receiver operating characteristic (true positive rate vs. false posi-
tive rate across all cutoffs) plots for distinct classifiers as assessed on all test (A) and independent test (distinct experiments or studies,
(C) data, including SSPCI, the best performing model (de novo lasso-logistic-regression, blue, continuous line), models trained on
population-derived stemness gene sets (yellow, Wong et al. [43] and green, PluriNetwork [42]) as well as the correlation with gene
expression-based classification (black) (Methods). (A, C) The fraction of cells predicted positive (blue) and negative (gray) for each of the
test (B) and independent test (D) datasets by SSPCI. The total number of cells as well as those used for testing only (in brackets) per
each dataset is indicated. Supporting Information Table S1 contains information on the full dataset, including acronym legends. (E) t-SNE
maps of intestinal epithelial ex vivo and organoid-derived LGR51 (classically considered SCs, red) and LGR5- (assumed to be non-SCs,
gray) cells [9]. Predicted stemness probabilities (gradient gray-orange-blue), binary classification outcome (blue: SSPC, gray: non-SSPC) by
SSPCI, as well as predicted cell cycle stage [25] (light green: G1, light brown: S, dark brown: G2/M, gray: not assigned-na) are indicated
for all cells. Abbreviations: ltHSCs, long-term hematopoietic stem cells; MDPs, macrophage dendritic cell progenitors; NSCs, neural stem
cells; (n)SSPC, (negative) somatic stem and progenitor cell; stHSCs, short-term hematopoietic stem cells; MSCs, mesenchymal stem cells;
ISCs, intestinal stem cells.
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interspersed, preponderantly basal cells with stem-like expres-

sion patterns. We found that many of the latter cells are

located in the IFE and the upper hair follicle region, as also

suggested recently [35].

Finally, for all predicted SSPCs in both systems, we

highlighted their associated genes (Supporting Information

Table S2; Fig. S3C, S3D), which can guide follow-up experi-

ments aimed at their isolation and characterization or validate

previously reported associations. For example, it has been

recently suggested that the TF STMN1 may act as a marker

for progenitor-like acinar cells [59]. Our data supports this

association given that its expression is highly correlated with

acinar SSPCs in both pancreas datasets (Supporting Informa-

tion Table S2; Fig. S3E, S3F).

Toward a Quantitative Measure of Multipotency

Prediction results on the intestinal, pancreas, and epidermal

data suggested that intermediate stemness probabilities may

reveal cells in transition stages between multipotent SSPCs

and fully differentiated cells (Fig. 2E, 3A–3E, Supporting Infor-

mation Fig. S2D). To test the capacity of our classier to distin-

guish among stem-like and differentiated cells, we analyzed

Figure 3. Predicted stem-like cells in human pancreas and mouse epidermis. (A, C, E): The probability of a positive prediction, referred
to as “stemness” probability, for endocrine (alpha, beta, gamma, and delta) and exocrine (acinar, ductal, activated/quiescent stellate)
cells using three distinct datasets (A: Baron et al. 2016 [36], C: Gruen et al. 2016 [12], and E: Wang et al. 2016 [37]). (B, D): The fraction
of cells that were predicted positive (blue) and negative (gray) for each of the cell types in A, C. (F): The fraction of epidermal cells pre-
dicted positive among the categories: nonbasal, basal, basal with expression of at least one epidermal stem cell marker (�1 SC marker),
or basal with no expression of any epidermal stem cell markers (no SC marker). (G): The fraction of epidermal basal cells predicted posi-
tive among seven distinct previously determined clusters [35]. The anatomical location of cells in each cluster is indicated (IFE–inter-fol-
licular epidermis, uHF–upper hair follicle). (H): t-SNE maps of cells in the IFE, corresponding to a temporal progression from most
undifferentiated (basal, green), to terminally differentiated (term. diff., in red) cells [35]. Predicted stemness probabilities (gradient gray
to blue) and binary classification outcome (blue: SSPC, gray: non-SSPC) are depicted for all cells. Abbreviations: (n)SSPC, (negative)
somatic stem and progenitor cell; SC, stem cell
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four distinct systems featuring cells with increasing level of

commitment: (a) lung development [8], (b) dendritic cell

development [22], (c) megakaryocyte differentiation [26] and

neurogenesis [10] (Fig. 4A, Supporting Information Table S1).

In all of these datasets, we observed a progressive decrease

in stemness probabilities across time/differentiation (Fig. 4A,

Supporting Information Fig. S4A; Table S1). For instance, while

the vast majority of multipotent MDPs and CDPs were pre-

dicted as positives, the stemness probabilities assigned to

CDPs were significantly lower (p5 1029, Wilcoxon rank sum

test) and further, the majority (68%) of dendritic cell precur-

sors (PreDCs) were identified as negatives (Fig. 4B, Supporting

Information Fig. S4A). These results suggest that the stemness

probability provided by our classifier can be used as a

quantitative indicator of a cell’s progression along a specific

differentiation path, independently of the cell’s particular cell

cycle stage at the time of measurement (Supporting Information

Fig. S4B, S4C).

Having established that our derived stemness probability is a

robust indicator of a cell’s differentiation status, we next asked

whether it could be used to functionally associate genes with

stemness. The large number of stem and non-stem cells present

in the intestinal organoid data [9] enabled us to explore this ques-

tion in detail. Among genes that showed significant expression

correlation with stemness probability and that were largely con-

fined to cells predicted as positives (Methods), we identified the

bona fide stemness marker LGR5 as well as other surface-

associated stem cell markers such as GNL3 and CD44 (Fig. 5A). A

broad range of TFs were also among these genes as well as sev-

eral metabolic factors such as PHGDH, which is part of the known

intestinal SC (ISC) signature [46] (Fig. 5A). In total, we found 98

genes that were ISC-associated (ISC.g3, Supporting Information

Table S3), representing known (26% overlapped with an ISC stem-

ness signature) and putatively novel players in ISC function. Gene

set enrichment analysis also revealed terms previously associated

with stem cell function, including retinoic acid signaling, DNA

replication, cell cycle, and proliferation (Supporting Information

Fig. S5A).

Signature Genes Are Required for a Stem-Like

Phenotype

Given the robust performance of our classifier across biological

systems, we reasoned that some of the genes that were

retained in our model (Methods and Supporting Information

Table S4) are likely to be more generally required for SSPC func-

tion. Using the resource collection “StemChecker” [20], we thus

asked which of these 23 genes (Fig. 5B) had previously been

implicated in stem cell biology. We found that 70% of them

Figure 4. The predicted stemness probability decreases as cells become increasingly differentiated. (A): The probability of a positive
prediction, referred to as “stemness” probability, for four groups of cells showing various degrees of lineage commitment and differenti-
ation. E14, MDP, 1501, and NSC (a–activated and q–quiescent) represent the least and E18, PreDCs, 150- and Oligo the most commit-
ted/differentiated cell type for each group. Supporting Information Table S1 contains information on the full dataset, including acronym
legends. (B): t-SNE map of the complete dendritic cell differentiation dataset [22], including MDP (black), CDP (green), and preDC (light
brown). Predicted stemness probabilities (gradient gray to blue) and binary classification outcome (blue: SSPC, gray: non-SSPC) are
depicted for all cells. Abbreviations: MDP, macrophage dendritic cell progenitor; CDP, common dendritic cell progenitor; PreDC, dendritic
cell precursor; NSC, neural stem cell; TAP transit amplifying cell; NB neuroblast; Oligo, oligodendrocyte; (n)SSPC, (negative) somatic stem
and progenitor cell.
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were part of at least one population-derived stemness gene set,

most often characteristic of neural, hematopoietic, or intestinal

SCs (Bonferroni adjusted p� .03) (Fig. 5B, 5C, Supporting Infor-

mation Table S4). Thus, while the majority of our classifier genes

are individually part of population-derived stemness gene sets,

they have not been previously used collectively to discriminate

SSPCs from differentiated cells.

Interestingly, 12 out of the 23 classifier genes showed sig-

nificantly higher expression in ISCs versus all other cells (Sup-

porting Information Fig. S5B; Table S4). This is despite the fact

that no ISCs, or any other endodermal SSPCs, have been used

for training the model. Among genes with higher expression

in ISCs were those that have already been implicated in ISC

biology such as Myc and Ccnd2 [60, 61] (Fig. 5D, Supporting

Information Fig. S5B). Others have only been partially linked

to cell differentiation, and have so far not been implicated in

ISC nor SSPC function in general. While a role in ISC function

is not an absolute requirement for classifier genes with higher

expression in ISCs, it is clearly intuitive. Therefore, we focused

on two such genes, Vgll4 and Lcp1, and examined the impact

of their shRNA-mediated gene suppression on intestinal orga-

noid growth. We used intestinal organoids from APCmin mouse

precancerous adenomas (Fig. 6A), since the upregulation of

the Wnt signaling pathway induces activation and expansion

of LGR51 ISCs and facilitates the analysis of stem cell pheno-

types [62, 63]. We expect that the results obtained from this

model can be extrapolated to wild-type ISCs as shown previ-

ously [63].

Figure 5. Somatic stem and progenitor cell (SSPC)-specific and discriminative genes include both known and novel players in SSPC biology.
(A): Correlation (Pearson’s r) (Cor) between the stemness probabilities (stemness p) assigned to intestinal organoid cells [9] and expression
of the stem cell markers Lgr5, Gnl3, and Cd44 as well as top (�0.4) correlated TFs and metabolism-related genes. (B): All genes (sorted in
decreasing order of their logistic regression coefficients) retained in the final classifier, and their overlap with population-derived ISC, NSC,
HSC, somatic stem cell (SC.Wong), and pluripotency (PluriNet) signatures, as well as their previous implication in proliferation/cell cycle [20].
Numbers correspond to the number of signature sets each gene is part of. (C): Overlap (–10*log_p) between the 23 genes retained in the
final classifier and population-derived stemness signatures, as visualized by StemChecker [20]. (D): t-SNE map of intestinal epithelial ex vivo
and organoid-derived LGR51 (classically considered as SCs) and LGR5- (assumed to be non-SCs) cells [9], depicting expression of the TFsMyc
and Etv6 (gray to orange gradient, orange highest expression). Abbreviations: HSC, hematopoietic stem cell; ISC, intestinal stem cell; NSC,
neural stem cell; TF, transcription factor.
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We first demonstrated successful shRNA-mediated gene

suppression of the two genes in the murine CT26 colon carci-

noma cell line and intestinal organoids (Fig. S6A). While

shRNA-mediated gene suppression in CT26 cells did not affect

cell phenotype or proliferation per se (data not shown), we

observed a striking reduction in the number and size of intes-

tinal organoids in the gene suppression samples (Fig. 6B, 6C,

Supporting Information Fig. S6B–S6D). Strikingly, organoid

growth after Vgll4 gene suppression was completely impaired,

such that organoids could not be passaged and RNA could

not be collected for further experiments. For Lcp1, the gene

suppression effects were observed both at initial and subse-

quent passages (Fig. 6C, Supporting Information Fig. S6B–

S6D). Importantly, we also found that canonical stemness

marker genes such as Lgr5, Vdr, and the potential oncogene

Wwp1 [64], were significantly downregulated at passage 0

when Lcp1 was suppressed, while Ki67, a proliferation marker,

showed no significant difference (Fig. 6D, 6E). Further passag-

ing of these organoids (passage 3 and 4), showed that these

shRNA-mediated gene suppressions increased differentiation

markers such as Anpep (absorptive lineage) and Tff3 (secretory

lineage).

Together, these results demonstrate for the first time the

requirement of two classifier genes, Lcp1 and Vgll4, in APCmin

intestinal organoid growth and propagation. However, follow-up

studies will be required to consolidate the role of these genes in

stem cell function in general throughout many tissues.

DISCUSSION

Despite substantial progress in understanding SSPC function

and their essential role in maintaining and repairing

mammalian tissues, it is currently unknown how many kinds

of distinct SSPCs exist, which tissues harbor them and what

their molecular and functional similarities and differences are

[4, 5]. Recent technological developments in the field of

scRNA-seq now facilitate analyses of unprecedented molecular

resolution, which enabled us to develop a universally applica-

ble method for the de novo identification of self-renewing

and multipotent cells. The timeliness of our study is demon-

strated by the fact that numerous SSPC and non-SSPC scRNA-

seq datasets have only very recently become available,

enabling for the first time cross-system analyses. Nevertheless,

we acknowledge that we were still constrained in the choice

of training and test sets, leading to overrepresentation of cer-

tain lineages (hematopoietic) and germ layers (mesoderm) in

our analyses as well as the lack of distinction between true

stem cells and multipotent progenitor cells. Ideally, all germ

layers and SSPC types (e.g., quiescent vs. active) should be

equally well represented in both training and test sets to

derive the best classifier. Therefore, when more datasets will

become available, one can envisage updating and further scal-

ing up the binary classification approach that we used here to

a multi-class system. The underlying aim would be to increase

the discriminative power of our approach by distinguishing

activated and quiescent somatic SCs, multipotent and unipo-

tent progenitors, for instance. This will in turn allow the

exploration of specific transcriptional properties for each of

the individual stages as well as detailed delineation of com-

monalities and differences between SSPCs.

A further limitation of our approach is the relative simplic-

ity of the used data normalization (quantiles), which dampens

the large dynamic expression range that is a powerful feature

of RNA-seq. We took this route given the large technical and

biological noise that is currently characterizing scRNA-seq

Figure 6. Effect of shRNA-mediated suppression of SSPC-discriminating genes in murine organoids. (A): Scheme of the isolation of intestinal
organoids from APCmin mice and the transduction with a lentiviral vector allowing shRNA-mediated gene suppression of Lcp1, Vgll4, or a con-
trol. (B, C): Organoid development is arrested upon Vgll4 and Lcp1 shRNA-mediated gene suppression at passage 0. Right (B), quantification
of SC and RFP1 organoids expressing the shRNA-Vgll4. Images show representative organoids, both RFP1 (and thus expressing the shRNA)
and RFP- (which function as control) (bright field, left and fluorescence image, right). Scale bars: 200 mm. (C) Serial passaging (P0 to P4) of
intestinal organoids. Images show that the morphology of shRNA-Lcp1 expressing organoids was compromised compared to control organo-
ids in the third (P3) and fourth (P4) passage. Scale bar, 200 mm. Bottom left, quantification of RFP1 organoids expressing the shRNA-Lcp1
over different passages. (D, E): Quantitative Reverse Transcription Polymerase Chain Reaction analyses of gene expression changes upon
shRNA-mediated gene suppression of Lcp1 in intestinal organoids showing downregulation of the stem cell markers Lgr5 and Vdr as well as
the potential tumour oncogeneWwp1 at passage 0 (D), and upregulation of the differentiation markers Tff3 and Anpep at passage 4. (E) The
proliferation marker Ki67 was not significantly altered (D, E). Gapdh was used for normalization; *, p< .05. Abbreviation: SC, single cell.

10 Single-Cell RNA-Seq-Based Stem Cell Identification

VC 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press STEM CELLS



data, likely exacerbated by working across experimental and

data analysis protocols [65]. We anticipate that, with the

maturation of experimental and computational scRNA-seq

techniques, the actual distribution of expression estimates will

be taken into account, such that the full dynamic range of

this powerful method can be exploited.

Despite these limitations, we showed here that our SSPC

identification method can be applied to previously completely

unseen scRNA-seq datasets, across different technologies

(e.g., CEL-seq and SMART-seq) [66, 67] and experimental sys-

tems, including highly proliferating (e.g., ISCs) and quiescent

(long-term HSCs) SSPCs. Consequently, we envision several

downstream applications for our classifier. First, it may allow

the detection of stem-like cells in underexplored, heteroge-

neous tissues, with the aim of identifying specifically

expressed marker genes to enable downstream phenotypic

analyses, as shown here for the mouse epidermis and the

human pancreas. Indeed, while the markers that we propose

in these two systems will require further validation, we also

demonstrated the feasibility of marker detection given the de

novo identification of the established markers LGR5 and GNL3

in intestinal epithelial organoids [62, 68]. Second, such a clas-

sifier may support estimating the fraction of stem-like cells in

a heterogeneous mix of cells. This may provide novel insights

into tissue organization, as we also illustrated here for the

epidermis and pancreas, or into a tissue’s or cell fraction’s

regenerative capacity, for example over the course of aging

[30], or to inform cell transplantation experiments [69]. A

third application is the detection of highly malignant cells in

tumors. That scRNA-seq data can be used in the context of

tumor heterogeneity to reveal stemness-exhibiting cells has in

fact recently been demonstrated in glioma samples [70].

While these latter applications go beyond the scope of the

current study, we envisage that they will constitute very fruit-

ful research areas in the future.

CONCLUSION

We developed a sc RNA-seq-based classifier that accurately

detects SSPCs across tissues, aiding in the resolution of still

poorly characterized systems. In addition, we demonstrate

that this classifier can provide a quantitative measure of a

cell’s progression along a differentiation path. The method’s

good cross-system performance supports the notion that

SSPCs can be recognized based on shared, but not necessarily

identical molecular properties. Specifically, genes with high

discriminative power have putative roles in SSPC biology, of

which many are known such as those of Myc and Ccnd2, but

others are novel such as Vgll4 and Lcp1’s function in the

intestinal system.

AVAILABILITY

We provide the trained model as well as the two best-

performing alternative models (elastic-net logistic regression

and random forest), training and test data as well as an R

script to produce the predictions discussed in this manuscript

and use on novel data. Available at https://github.com/

DeplanckeLab/SSPCI. Predictions can also be obtained and

visualized through the web-based platform ASAP at https://

asap.epfl.ch/[71].
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