Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Diffusion LMS for Multitask Problems With Local Linear Equality Constraints
 
research article

Diffusion LMS for Multitask Problems With Local Linear Equality Constraints

Nassif, Roula  
•
Richard, Cedric
•
Ferrari, Andre
Show more
2017
IEEE Transactions on Signal Processing

We consider distributed multitask learning problems over a network of agents where each agent is interested in estimating its own parameter vector, also called task, and where the tasks at neighboring agents are related according to a set of linear equality constraints. Each agent possesses its own convex cost function of its parameter vector and a set of linear equality constraints involving its own parameter vector and the parameter vectors of its neighboring agents. We propose an adaptive stochastic algorithm based on the projection gradient method and diffusion strategies in order to allow the network to optimize the individual costs subject to all constraints. Although the derivation is carried out for linear equality constraints, the technique can be applied to other forms of convex constraints. We conduct a detailed mean-square-error analysis of the proposed algorithm and derive closed-form expressions to predict its learning behavior. We provide simulations to illustrate the theoretical findings. Finally, the algorithm is employed for solving two problems in a distributed manner: A minimum-cost flow problem over a network and a space-time varying field reconstruction problem.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TSP.2017.2721930
ArXiv ID

1610.02943

Author(s)
Nassif, Roula  
Richard, Cedric
Ferrari, Andre
Sayed, Ali H.  
Date Issued

2017

Published in
IEEE Transactions on Signal Processing
Volume

65

Issue

19

Start page

4979

End page

4993

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143427
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés