Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Robust Adaptation in Impulsive Noise
 
research article

Robust Adaptation in Impulsive Noise

Al-Sayed, Sara
•
Zoubir, Abdelhak M.
•
Sayed, Ali H.  
2016
IEEE Transactions on Signal Processing

The popular least-mean-squares (LMS) algorithm for adaptive filtering is nonrobust against impulsive noise in the measurements. The presence of this type of noise degrades the transient and steady-state performance of the algorithm. Since the distribution of the impulsive noise is generally unknown, a robust semi-parametric approach to adaptive filtering is warranted, where the output error nonlinearity is adapted jointly with the parameter of interest. In this paper, a robust adaptive filtering algorithm is developed that effectively learns and tracks the output error distribution to improve estimation performance. The performance of the algorithm is analyzed mathematically and validated experimentally.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TSP.2016.2535239
Author(s)
Al-Sayed, Sara
Zoubir, Abdelhak M.
Sayed, Ali H.  
Date Issued

2016

Published in
IEEE Transactions on Signal Processing
Volume

64

Issue

11

Start page

2851

End page

2865

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143414
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés