Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Unbiased Model Combinations for Adaptive Filtering
 
research article

Unbiased Model Combinations for Adaptive Filtering

Kozat, Suleyman S.
•
Singer, Andrew C.
•
Erdogan, Alper Tunga
Show more
2010
IEEE Transactions on Signal Processing

In this paper, we consider model combination methods for adaptive filtering that perform unbiased estimation. In this widely studied framework, two adaptive filters are run in parallel, each producing unbiased estimates of an underlying linear model. The outputs of these two filters are combined using another adaptive algorithm to yield the final output of the system. Overall, we require that the final algorithm produce an unbiased estimate of the underlying model. We later specialize this framework where we combine one filter using the least-mean squares (LMS) update and the other filter using the least-mean fourth (LMF) update to decrease cross correlation in between the outputs and improve the overall performance. We study the steady-state performance of previously introduced methods as well as novel combination algorithms for stationary and nonstationary data. These algorithms use stochastic gradient updates instead of the variable transformations used in previous approaches. We explicitly provide steady-state analysis for both stationary and nonstationary environments. We also demonstrate close agreement with the introduced results and the simulations, and show for this specific combination, more than 2 dB gains in terms of excess mean square error with respect to the best constituent filter in the simulations.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TSP.2010.2047639
Author(s)
Kozat, Suleyman S.
Singer, Andrew C.
Erdogan, Alper Tunga
Sayed, Ali H.  
Date Issued

2010

Publisher

IEEE

Published in
IEEE Transactions on Signal Processing
Volume

58

Issue

8

Start page

4421

End page

4427

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143186
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés