Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Transient Analysis of Adaptive Affine Combinations
 
research article

Transient Analysis of Adaptive Affine Combinations

Kozat, Suleyman S.
•
Erdogan, Alper T.
•
Singer, Andrew C.
Show more
2011
IEEE Transactions on Signal Processing

In this correspondence, we provide a transient analysis of an affinely constrained mixture method that adaptively combines the outputs of adaptive filters running in parallel on the same task. The affinely constrained mixture is adapted using a stochastic gradient update to minimize the square of the prediction error. Although we specifically carry out the transient analysis for a combination of two equal length adaptive filters trying to learn a linear model working on real valued data, we also provide the final equations and the necessary extensions in order to generalize the transient analysis to mixtures combining more than two filters; using Newton based updates to train the mixture weights; working on complex valued data; or unconstrained mixtures. The derivations are generic such that the constituent filters can be trained using unbiased updates including the least-mean squares or recursive least squares updates. This correspondence concludes with numerical examples and final remarks.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TSP.2011.2162325
Author(s)
Kozat, Suleyman S.
Erdogan, Alper T.
Singer, Andrew C.
Sayed, Ali H.  
Date Issued

2011

Publisher

IEEE

Published in
IEEE Transactions on Signal Processing
Volume

59

Issue

12

Start page

6227

End page

6232

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143182
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés