Journal article

A Regularized Robust Design Criterion for Uncertain Data

This paper formulates and solves a robust criterion for least-squares designs in the presence of uncertain data. Compared with earlier studies, the proposed criterion incorporates simultaneously both regularization and weighting and applies to a large class of uncertainties. The solution method is based on reducing a vector optimization problem to an equivalent scalar minimization problem of a provably unimodal cost function, thus achieving considerable reduction in computational complexity.


Related material