Abstract

In this paper, multiple-input multiple-output (MIMO) relay transceiver processing is proposed for multiuser two-way relay communications. The relay processing is optimized based on both zero-forcing (ZF) and minimum mean-square-error (MMSE) criteria under relay power constraints. Various transmit and receive beamforming methods are compared including eigen beamforming, antenna selection, random beamforming, and modified equal gain beamforming. Local and global power control methods are designed to achieve fairness among all users and to maximize the system signal-to-noise ratio (SNR). Numerical results show that the proposed multiuser two-way relay processing can efficiently eliminate both co-channel interference (CCI) and self-interference (SI).

Details