Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hoo optimality of the LMS algorithm
 
research article

Hoo optimality of the LMS algorithm

Hassibi, Babak
•
Sayed, Ali H.  
•
Kailath, Thomas
1996
IEEE Transactions on Signal Processing

We show that the celebrated least-mean squares (LMS) adaptive algorithm is H/sup /spl infin// optimal. The LMS algorithm has been long regarded as an approximate solution to either a stochastic or a deterministic least-squares problem, and it essentially amounts to updating the weight vector estimates along the direction of the instantaneous gradient of a quadratic cost function. We show that the LMS can be regarded as the exact solution to a minimization problem in its own right. Namely, we establish that it is a minimax filter: it minimizes the maximum energy gain from the disturbances to the predicted errors, whereas the closely related so-called normalized LMS algorithm minimizes the maximum energy gain from the disturbances to the filtered errors. Moreover, since these algorithms are central H/sup /spl infin// filters, they minimize a certain exponential cost function and are thus also risk-sensitive optimal. We discuss the various implications of these results and show how they provide theoretical justification for the widely observed excellent robustness properties of the LMS filter.

  • Details
  • Metrics
Type
research article
DOI
10.1109/78.485923
Author(s)
Hassibi, Babak
Sayed, Ali H.  
Kailath, Thomas
Date Issued

1996

Publisher

Institute of Electrical and Electronics Engineers

Published in
IEEE Transactions on Signal Processing
Volume

44

Issue

2

Start page

267

End page

280

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/142860
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés