Conference paper

Auction Based Mechanisms for Dynamic Task Assignments in Expert Crowdsourcing

Crowdsourcing marketplaces link large populations of workers to an even larger number of tasks. Thus, it is necessary to have mechanisms for matching workers with interesting and suitable tasks. Earlier work has addressed the problem of finding optimal workers for a given set of tasks. However, workers also have preferences and will stay with a platform only if it gives them interesting tasks. We therefore analyze several matching mechanisms that take into account workers' preferences as well. We propose that the workers pay premiums to get preferred matches and auction-based models where preferences are expressed through variations of the payment for a task. We analyze the properties of two matching different mechanisms: Split Dynamic VCG (SDV) and e-Auction. We compare both the mechanisms with Arrival Priority Serial Dictatorship (APSD) empirically for efficiency.


Related material