A posteriori error estimation for the stochastic collocation finite element method

In this work, we consider an elliptic partial differential equation with a random coefficient solved with the stochastic collocation finite element method. The random diffusion coefficient is assumed to depend in an affine way on independent random variables. We derive a residual-based a posteriori error estimate that is constituted of two parts controlling the stochastic collocation (SC) and the finite element (FE) errors, respectively. The SC error estimator is then used to drive an adaptive sparse grid algorithm. Several numerical examples are given to illustrate the efficiency of the error estimator and the performance of the adaptive algorithm.


Publié dans:
...accepted for publication on SIAM J. Numer. Anal ... also available as Mathicse Report nr 24.2017
Année
2017
Laboratoires:




 Notice créée le 2017-11-22, modifiée le 2018-09-13

n/a:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)