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Metaprograms are programs that manipulate (generate, analyze and evaluate) other programs. These tasks

are greatly facilitated by quasiquotation, a technique to construct and deconstruct program fragments using

quoted code templates expressed in the syntax of the manipulated language. We argue that two main flavors

of quasiquotes have existed so far: Lisp-style quasiquotes, which can both construct and deconstruct programs

but may produce code that contains type mismatches and unbound variables; and MetaML-style quasiquotes,

which rely on static typing to prevent these errors, but can only construct programs. In this paper, we

show how to combine the advantages of both flavors into a unified framework: we allow the construction,

deconstruction and evaluation of program fragments while ensuring that generated programs are well-typed

and well-scoped, a combination unseen in previous work. We formalize our approach as λ { } , a multi-stage

calculus with code pattern matching and rewriting, and prove its type safety. We also present its realization in

Squid, a metaprogramming framework for Scala, leveraging Scala’s expressive type system. To demonstrate

the usefulness of our approach, we introduce speculative rewrite rules, a novel code transformation technique

that makes decisive use of these capabilities, and we outline how it simplifies the design of some crucial query

compiler optimizations.
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1 INTRODUCTION
In this paper, we tackle the problem of statically typing metaprograms: programs that construct,

deconstruct, rewrite and evaluate other programs. Well-typed metaprograms should not “go wrong,”

and in particular they should not run into type mismatches and unbound variable errors at runtime,

which could arise from erroneous combinations of these operations.

We describe our solution in Squid,
1
a Scala macro library that makes use of structural subtyping

and intersection types to express the contextual dependencies of program fragments. We also

formalize the essence of Squid as λ { } , a multi-stage calculus with support for code pattern matching

and rewriting, and prove its soundness as progress and type preservation. This work was motivated

by the needs of real-world metaprogramming applications; we give several use cases inspired by

our work on query compilation, and describe speculative rewrite rules, a new optimization pattern

enabled by our support for flexible open code manipulation.

1
The Squid type-safe metaprogramming framework is open source, accessible online at https://github.com/epfldata/squid/.
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1.1 Basics ofQuasiquotation
Our solution is based on code quasiquotation— or just quasiquotes: quoted code templates that offer a

way for program fragments to be composed (put together to form bigger programs) and decomposed

(inspected and broken down into smaller parts). As a basic example, in Squid the value denoted by

code"2 + 2" is not a string of characters, but an abstract syntax tree (AST) representing the expression
2 + 2; it can be viewed as syntactic sugar for manually constructing an AST — in explicit pseudo-

syntax IntAdd(Const(2),Const(2)). Within these quotes, it is possible to leave holes (also called

unquotes, or antiquotes) to be filled in later. Holes are written ${...} or $id where id is an identifier.

In expressions, holes enable code insertion: they are substituted with the provided code values.

For example, in a context where x = code"2", expression code"2 + $x" is equivalent to code"2 + 2".

In patterns, holes enable code extraction: they pull code values out of the matched programs,

making the result available to the right-hand side of the corresponding pattern matching branch. As

an example of code pattern-matching,
2 code"print(27+1)" match { case code"print($x)" => x }

extracts the code fragment passed to print in the original program, and thus evaluates to code"27+1".

In this work, we focus on the quasiquotation of code in the same language as the host language

(the language in which code manipulation is done — here Scala). This is not an important restriction

in practice, as long as the host language is powerful enough to express the programs we want to

manipulate. For example, many domain-specific languages (DSL) have been successfully embedded

in expressive languages with a flexible syntax such as Haskell [Axelsson et al. 2010; Hudak 1996;

Najd et al. 2016] and Scala [Lee et al. 2011; Ofenbeck et al. 2013; Rompf and Odersky 2010].

1.2 Early Example of Rewriting
To motivate the rest of this paper, we now detail a more substantial example. Consider the problem

of finding all local variables that hold a pair of values (a,b), removing these variables and rewriting

their uses into direct accesses to a and b. The following Scala program uses Squid’s rewrite primitive

to traverse a pgrm term bottom up matching any variable p bound to a pair of integers; in the scope

body of each such binding, it replaces projections to p’s first and second components (syntax p._1

and p._2) with the corresponding pair element a or b:

pgrm.rewrite { case code"val p: (Int,Int) = ($a,$b); $body" =>

val body2 = body.rewrite { case code"${body.p}._1" => a case code"${body.p}._2" => b }

body2.p ~> code"($a,$b)" }

The syntax is explained in detail in later sections. For now, what is important to see is that our

system statically keeps track of the fact that variable p is free in program fragments body and

body2 (i.e., these terms are “open in p”). Syntax body.p is used to refer to that unbound variable. In

patterns, body.p matches any free occurrences of p. Syntax body2.p ~> x returns the substitution
in body2 of all occurrences of that free variable with provided code fragment x. This is used to

replace all remaining occurrences of p (if any) with an in-place reconstruction of the original pair.

For example, program code"val my = (1,2+2); print(my); my._1 + my._2" is first rewritten into

body2 = code"print(my); 1 + (2+2)", and then into code"print((1,2+2)); 1 + (2+2)".

Squid is hygienic because it will not mix up the matched binding p with bound variables present

in the original program pgrm, even if they also happened to be named p. In addition, forgetting to

substitute p in body2 at the end of the rewriting will result in a type error, reported at compilation

time — otherwise, our rewriting could result in programs with unbound references to p.

Before we delve further into the description of our system, we present some background on

quasiquotation necessary to situate our contributions.

2
Scala expression s match {case p => e} corresponds to SML’s case s of p => e or Caml’s match s with p -> e.
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1.3 AnalyticQuasiquotes
Code quasiquotes have been present in research and industry under two main flavors [Ganz et al.

2001], which we will refer to as the Analytic and Statically-Typed flavors. Analytic quasiquotes

were pioneered in the context of Lisp, where source code is essentially made of arbitrarily-

nested lists and symbols (S-expressions), and programs manipulate data structures encoded using

the same format. For example, function (lambda (x) (print x)) can be represented with datum

`(lambda (x) (print x)) — the “back-tick” at the beginning indicates the start of a quasiquotation,

to distinguish it from plain Lisp source code. Therefore, programs can naturally manipulate source

code like any other data structure (code as data). In addition, the built-in eval function is used to

interpret any datum as source code by executing it (data as code). Antiquotation in Lisp is written

with a comma, so expression `(lambda (x) ,(id `x)) seen in Table 1 first executes the identity

function id on `x returning `x , then places that code fragment into a bigger program, constructing

an implementation of the identity function `(lambda (x) x).

The fact that Lisp programs can also analyze (inspect) source code derives directly from the idea

of code as data. Allowing quasiquotes in pattern matching is one convenient way to do it, and is in

fact standard in several dialects of Lisp, including Scheme. This is what motivates our terminology:

these quasiquotes have analytic capabilities.

1.4 Statically-TypedQuasiquotes
Lisp is dynamically typed, which means that it does not statically prevent the occurrence of type

mismatches and unbound variable references at runtime. For example, since x is a valid Lisp program,

(eval `x) is also valid but raises a runtime error in the style of “x is undefined and cannot be

evaluated” unless it is executed in a context where some x is defined. In contrast, in a statically
typed programming language, type mismatches and undefined variable errors are never supposed

to happen at runtime. This makes the notions of code as data and data as code significantly harder

to satisfy. Indeed, we must make sure that program fragments containing unbound references are

never evaluated, and that all constructed programs are well-typed. We must reject programs such

as code"x".run (where method run has the same functionality as eval in Lisp). With MetaML, Taha

and Sheard [2000] introduced statically-typed quasiquotes, allowing the expression of type-safe

program generators that cannot generate ill-typed or ill-scoped programs. In MetaML, the quotation

⟨x+1⟩ (similar to Lisp’s `(+ x 1)) is only valid if it is surrounded by a code fragment at the same
quotation depth containing a binder for x with type int, so that x+1 will end up in a place where x

is bound. Together with antiquotes, written ~(...), we can rewrite in MetaML the Lisp example

we just saw, as ⟨fun x → ~(id ⟨x⟩)⟩, which evaluates to ⟨fun x → x⟩. MetaML historically faced

some challenges. The first was to statically prevent the evaluation of open code (code that contains

variables which have not yet been bound). For example, ⟨fun x → ~( run ⟨x⟩ ; ⟨x⟩ )⟩ should be

rejected: ⟨x⟩ cannot be run as it has not yet been inserted in a context where x is bound. Another

challenge was that of scope extrusion, where a piece of code escapes its enclosing scope by ways of

imperative features such as mutable references, as in ⟨fun x → ~( some_ref := ⟨x⟩ ; ⟨x⟩ )⟩. Two

general approaches have been proposed to solve these problems; the first makes use of contextual

types [Rhiger 2012b], where the environments that terms depend on are reflected in their types;

the second uses environment classifiers, which abstract over these contexts using partially-ordered

type variables [Kiselyov et al. 2016; Taha and Nielsen 2003].

MetaML quasiquotes are not as expressive as analytic quasiquotes like those of Lisp, because

constructed code is viewed as a black box and cannot be inspected; quasiquotes cannot be used in

patterns,
3
and it is not possible to express program rewritings like the one we saw in Section 1.2.

3
Quasiquote patterns for MetaML were suggested by Sheard et al. [1999], but were neither implemented nor formalized.
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Typ Scp Ana Hyg Syntax Example

Squid (This Paper)     code"(x: T) => ${ id(code"?x:T") }"

Squid, old version (0)  G# G#  code"(x: T) => ${ id(_:Code[T]) }(x)"

Scala-reflection QQ (1) # #  # q"(x: T) => ${ id(q"x") }"

Scala-refl. reify/splice G# # #  — cannot express open terms —

MetaOCaml (2)  G# #  .< fun x → .~( id .< x >. ) >.

Template Haskell (3) # G# # G# [| \x -> $( id [| x |] ) |]

Typed Template Haskell   * #  * [|| \x -> $$( id [|| x ||] ) ||]

Stratego (4) # #  # [[ (x: int) => ~( id ([[ x ]]) ) ]]

Lisp/Scheme QQ (5) # #  # `(lambda (x) ,( id `x ))

λ { } (This Paper)     ⌈ λx : T . ⌊ id ⌈x : T ⌉ ⌋ ⌉
MetaML Calculus (7)  G# #  ⟨ λx . ~( id ⟨ x ⟩ ) ⟩

Rhiger’s λ[ ] (6)   #  ↑ ( λx : T . ↓ ( id ↑ x ) )
Nanevski’s ν�

(8)   G#  let box u = id X in box λx . {X =̇ x }u

Table 1. Comparison of quasiquotes in several systems. Criteria: statically ensure program fragments are well-
typed and well-scoped (columns Typ and Scp); support analysis via pattern-matching (Ana); support hygiene
(Hyg); see Sections 6.1, 6.2 and 6.3 for a full discussion. References: (0) Parreaux et al. 2017b; (1) Shabalin
et al. 2013; (2) Taha 2004; (3) Sheard and Jones 2002; (4) Visser 2002; (5) Bawden et al. 1999; (6) Rhiger 2012a;
(7) Taha and Nielsen 2003; (8) Nanevski and Pfenning 2005.

1.5 Best of Both Worlds
Quasiquotes that belong to the analytic category include those of the Lisp family [Bawden et al.

1999], Stratego [Visser 2002] and Scala reflection [Shabalin et al. 2013]. The safer, statically-typed

category includes the quasiquotes of MetaML [Taha and Sheard 2000], MetaOCaml [Taha 2004],

MacroML [Ganz et al. 2001] and Typed Template Haskell, a variant of Template Haskell [Sheard and

Jones 2002]. Table 1 summarizes the properties of these systems, and is discussed further in Section 6.

In this paper, we show how to combine the advantages of both flavors into a unified framework.

We allow the construction and inspection of code fragments while ensuring that generated code

is always well-typed and well-scoped, and we demonstrate the use of code rewriting to define

type-safe domain-specific optimizations. The contributions we make are organized as follows:

• In Section 2 we explain how Squid approaches the problem of open code manipulation, and

we introduce speculative rewrite rules, a novel use of quasiquotes to design type-safe program

transformations. As an example, we present a data structure optimization.

• In Section 3 we distill the essence of Squid as λ { } , a multi-stage calculus that can analyze and

rewrite code fragments. We formalize the static and dynamic (big-step) semantics of λ { } , and
we prove type preservation and progress.

• In Section 4we detail how Squid is embedded in Scala, amodern object-oriented and functional

programming language. In particular, we show how to leverage Scala’s advanced type system,

and how to abstract over variable names and context requirements in a type-safe way.

• In Section 5, we detail some real-world use cases, explaining how Squid facilitates the design

and robust implementation of two query compiler optimizations.

Note that we focus solely on expression quasiquotes, which cannot directly manipulate module, class

and method definitions. This restriction is similar to other staging frameworks, such as MetaML

[Taha and Sheard 2000], MetaOCaml [Kiselyov 2014], and LMS [Rompf and Odersky 2010].
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2 PRESENTATION OF SQUID AND APPLICATION EXAMPLES
Making sure that bindings are manipulated correctly so that program transformations do not result

in unintentional capture (when bindings with the same names interfere; a.k.a., lack of hygiene) or

ill-scoped code (when variable references are extruded from their binders’ scopes) is a notoriously

hard and subtle problem. In this section, we describe and exemplify how this is done in Squid.

2.1 Handling of Open Code in Squid
The way Squid allows the type-safe manipulation of open program fragments is twofold:

• Represent free variables explicitly: instead of using the type system to resolve variable

references across quotation boundaries like in MetaML, we require users to explicitly declare

which variables are free in a given quasiquote by prepending a ‘?’ to their names.
4
The

example given in Table 1 can be written in Squid code"(x: Int) => ${id( code"?x : Int" )}".

The main advantage is that it renders the composition of code more modular: an open code

fragment can be written out without having bindings for all its free variables syntactically

surrounding it; i.e., Squid quasiquotes do not have to be lexically scoped. In the previous

example, we can extract the inner expression into a let binding: val inner = id(code"?x: Int");

code"(x: Int) => $inner", which does not work in MetaML. Allowing violations of lexical

scoping based on explicit annotations is related to the approach taken by Kim et al. [2006].

This property also translates into welcome practical benefits: it integrates well with Scala’s

local type inference, and allows us to implement the entire quasiquote system as a macro

library, requiring no modifications to Scala’s type checker.

• Reflect context requirements in the type of code fragments: in order to track which fragments

are open and when their free variables are to be captured, as well as to decide when code

is safe to be evaluated, we make the types of quoted terms directly reflect their context
requirements, i.e., the names and types of the free variables contained in those terms. For

instance, fragment val fx = code"(?x: Int) + 1" has type Code[Int,{x:Int}], which means

that it represents a term of type Int that needs to be inserted in some context where a variable

x of type Int is defined. By composition, code"$fx.toDouble" has type Code[Double,{x:Int}]

as it is equivalent to code"((?x:Int)+1).toDouble". The free variables contained in a term

that is inserted into some quotation context are correctly captured by the variables bound

in said context: code"val x = 0; $fx.toDouble" has type Code[Double,{}] and evaluates to

code"val x = 0; (x+1).toDouble" (or, equivalently, code"val y = 0; (y+1).toDouble").

Quasiquote patterns may be used to match bindings, and extracted subterms will have types that

reflect and track their potential dependencies to these bindings; e.g., using→ to denote evaluation:

val f = code"(x: Int) => x + (?y:Int)" : Code[Int=>Int,{y:Int}] → code"(x:Int) => x + ?y"

val g = f match {case code"(z => $body)" => body}: Code[Int,{y:Int;z:Int}] → code"?z + ?y"

Several things should be noted here: First, code quasiquotes integrate well with Scala’s type inference,

as the type of the scrutinee f propagates to help type the pattern in g. If f had type Code[Any,_]

instead, we would have to write the pattern as case code"(z: Int) => $body: Int". Second, the names

of bound variables do not matter, and a lambda that used x as the parameter name can be matched

as if it were using z instead. Third, the type of extracted fragment body reflects that it may contain

free variables from two different sources: by propagation from the scrutinee’s type we know it

4
We could avoid the ‘?’ and view all unqualified names as free variables, but this would be a bad ergonomic choice: typos

could easily result in confusing errors, and we do not want for e.g., code"print(1)" to be interpreted as code"(?print)(1)".
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may refer to some y, and because the pattern introduced a binding named z it may as well refer to

it — what happened is that body was safely extruded from its enclosing context {z:Int}.

2.2 Rewrite Rules and Polymorphism
To help with the definition of safe rewritings, Squid provides a rewrite method that traverses a

program and applies a transformation while checking at compile-time that the transformation

preserves the type and context of each sub-terms. Additionally, in order to define type-parametric

rewrite rules, Squid allows the extraction of types, along with terms. In the example below, given

some pgrm fragment we transform calls to foldLeft on List objects into imperative foreach loops:

pgrm rewrite { case code"($ls:List[$t]).foldLeft[$r]($init)($f)"

=> code"var cur = $init; $ls.foreach(x => cur = $f(cur, x)); cur" }

For example, if pgrm = code"List(1,2).foldLeft(0)((acc,x) => acc+x) + 1", the rewriting returns

code"var cur = 0; List(1,2).foreach(x => cur = cur+x); cur + 1" (the β-redex is removed by Squid’s

internal normalization). Note that in Scala partial functions are written { case ... => ... }; they

are similar to pattern matching, but they need not be exhaustive. Operator syntax ‘p rewrite f’ is

the same as ‘p.rewrite(f)’. Notice that we extract a type t that is never used explicitly — it is in fact

inferred as part of the type of the quoted program on the right-hand side of the rewriting case.
5

2.3 Fixed Point Rewritings
Rewritings can be applied over and over again until they reach a fixed point. In Squid, rewriting

Math.pow(x,2) into x * x is trivially expressed, but let us here consider the generalization of that

problem to arbitrary exponents. We define below a fixed point rewriting that uses binary exponenti-

ation to transform calls to Math.powwith a constant integer exponent into a series of multiplications.

Const is the constructor for constants, used to lift current-stage values as code constants and extract

constant values from code fragments. For instance, pattern code"pow($x,${Const(exp)})" extracts x

as a code value of type Code[Double,_], but it extracts exp as a “bare” value of type Double. Method

isWhole from class Double is used to query whether a floating-point number has an integral value.

import Math.pow

pgrm fix_rewrite {

case code"pow($x,$exp)" if !x.isTrivial => code"val base = $x; pow(base,$exp)"

case code"pow($x,0)" => code"1.0"

case code"pow($x,${Const(exp)})" if exp.isWhole && exp > 0

=> if (exp % 2 == 0) code"val tmp = pow($x,${Const(exp/2)}); tmp * tmp"

else code"$x * pow($x,${Const(exp-1)})" }

The role of the first case rule, which is applied first, is to let-bind the base x passed to pow if it is not

“trivial” i.e., unless it is a constant or a variable reference. This avoids code duplication that would

otherwise result from the following rules.
6
For example, pow(.5,3) is rewritten into 0.5*{val tmp_0

= 0.5*1.0; tmp_0*tmp_0}, duplicating 0.5, but pow(readDouble,3) (where readDouble reads a number

from standard input) is rewritten into val x_0 = readDouble; x_0*{val tmp_1= x_0*1.0; tmp_1*tmp_1}.

5
This named pattern variable is necessary ($t cannot be replaced with $_) because Squid needs to generate a local, named

type symbol representing the extracted type. This is explained further in Section 4.1.

6
Note that Squid can be used with different underlying intermediate representation [Parreaux et al. 2017b]; by using an

appropriate representation (such as the A-normal form), such code duplication concerns disappear, as we show in [2017a].
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def optimize[T] (pgrm: Code[T,{}]) : Code[T,{}] = pgrm rewrite {

case code"val arr = new Array[($ta,$tb)]($size); $body" =>

val a = code"?a : Array[$ta]" ; val b = code"?b : Array[$tb]"

val body2 = body rewrite {

case code"${body.arr}($i)._1" => code"$a($i)"

case code"${body.arr}($i)._2" => code"$b($i)"

case code"${body.arr}($i) = ($va, $vb)" => code"$a($i) = $va; $b($i) = $vb"

case code"${body.arr}($i)" => code"($a($i), $b($i))"

case code"${body.arr}.size" => code"$a.size" }

val body3 = body2.arr ~> abort()

code"val a = new Array[$ta]($size); val b = new Array[$tb]($size); $body3" }

Fig. 1. A speculative rewrite rule for transforming any array of pairs into two separate arrays.

2.4 Free Variables and Substitution
As explained in the introduction, given some variable x free in t, we can refer to that free variable

with syntax t.x, and we can replace all its occurrences in t with syntax t.x ~> y, as in the following:

val a = code"(?x: Int) + 1" : Code[Int, {x: Int}] → code"?x + 1"

val b = a.x : Code[Int, {x: Int}] → code"?x"

val c = a.x ~> code"27" : Code[Int, {}] → code"27 + 1"

In fact, the t.x construct is equivalent to using an explicit free variable in a quasiquote: above, a.x

is equivalent to code"?x:Int". Note that the right-hand side y of t.x ~> y, is evaluated lazily (i.e.,

only if there are actual instances of x left in t), a property that proves useful in the next sections.

2.5 Speculative Rewrite Rules
The current innermost rewriting can always be aborted by calling abort() at any point in the right-

hand side of the rewriting case. This call never returns and passes the control back to the rewriting

engine.
7
We call speculative rewrite rules those rewrite rules that attempt to apply a transformation

but abort that transformation as soon as they find something that should have prevented it from

applying in the first place. In other words, speculative rewrite rules are a convenient and type-safe

way to express conditional rewritings without having to define separate, error-prone analysis

passes over the program one wants to transform. In the next section, we present an example of

speculative rewrite rule and explain how Squid ensures the safety of such transformers. Another

example, directly extracted from our work on query compilation [Shaikhha et al. 2016], is given in

Section 5.1.

2.6 Motivating Example: Array of Tuples Optimization
Figure 1 presents an example of speculative rewrite rule that attempts to turn any array of 2-tuple

elements into two distinct arrays. This optimization is sometimes known as “array-of-structs to

struct-of-arrays,” and has particular relevance in the field of databases (see Section 5.2); its goal

is to streamline array accesses, making them more cache-friendly for the processor, and to avoid

7
This mechanism is similar to delimited continuations [Danvy and Filinski 1990], where ‘case pattern => ...’ acts like

(reset (shift c ...)) and abort() acts like a short-circuiting (c ()). This is implemented on the JVM using exceptions.
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the performance cost of allocating tuples.
8
A trace of the successive values taken by each variable,

given a dummy input pgrm, is shown below:

pgrm = code"if (readInt > 0) { val a = new Array[(Int,String)](3); a(0) = (36,"ok"); a.size }"

size = code"3"

body = code"(?arr)(0) = (36,"ok"); (?arr).size"

body2 = code"(?a)(0) = 36; (?b)(0) = "ok"; (?a).size"

body3 = body2

result = code"val a = new Array[Int](3); val b = new Array[String](3); a(0) = 36; b(0) = "ok"; a.size"

optimize(pgrm) → code"if (readInt > 0) { $result }"

To understand this example, three key properties of Squid should be noted: 1. holes at the end of a list

of statements can be viewed asmatching the input greedily; for instance, pattern code"print(42); $b"

will match a print statement and all following statements in the current block;
9
2. as shown in the

introduction, qualified references to free variables (here body.arr) can be used even from within a

pattern unquote — remember that this is just syntax sugar, code"${body.arr}($i)" being equivalent

to code"(?arr:Array[T])($i)"; and 3. free variables in patterns will match free variables in program

fragments. All statements following the array binding that is matched in the original program

are captured into body; they are extruded from their enclosing context, and their references to the

bound array are transformed into references to the free variable arr. In the inner rewriting, we then

match references to arr to transform usages of the array as they existed in the original program.

Note that this process is hygienic: as it traverses a program, the rewrite method only extrudes

bindings that are matched explicitly in rule patterns, and therefore there is no risk of encountering

free variables also named ‘arr’ that referred to different bindings than the one we matched.

Once the inner rewriting has been applied, the result body2 contains a program fragment where

patterns like arr(i)._1 have been replaced with expressions referring to free variables a and b —

in this case, (?a)(i). All remaining references to arr are then searched for using the free variable

substitution syntax (which evaluates its second argument lazily), and if any is found the rewriting

is aborted. Notice that in the inner rewriting, we deliberately do not handle patterns of the form

code"${body.arr}($i) = $v" where v is not of the form (x,y). As a consequence, arrays used in

such a way are not transformed. The rationale is that if the original program stored already-tupled

values into the array, then perhaps it is not a good idea to do the transformation: it may lead to

more allocation rather than less.
10
Finally, note that while the optimization in Figure 1 is defined for

tuples of two elements only, applying it until it reaches a fixed point will also transform arrays of

tuples of more elements, as long as an inductive encoding of tuples is used — for example, (a,b,c,d)

could be encoded as a composition of nested 2-tuples such as (a,(b,(c,d))).

To get a sense of how Squid’s type system and contextual code types help us avoid runtime errors,

let us look at some programming mistakes that could be made while writing the transformer:

• omitting to insert $body3 in the result code fragment: this would give result type Unit (i.e., void

in Scala) and the rewrite method would complain that the rewriting is not type-preserving;

• using the wrong array in the inner rewriting — for example writing code"$a($i)" instead of

code"$b($i)": the inner rewrite will complain that this case tries to rewrite a term of type ta

to a term of type tb and reject it (fail to compile), as above;

8
The JVM stores composite objects such as tuples using an additional level of indirection (boxing), which is removed if we

store each field of the tuple in a separate array.

9
A natural consequence of the inductive representation of program statements, i.e., {a;b;c} is equivalent to {a;{b;{c}}}.

10
In a real-world setting, a more precise analysis with heuristics could determine whether or not to apply the rewriting.
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• forgetting to define one of a or b in the final result of the main rewriting: the result type

inferred for the whole rewriting will be
11 Code[T,{a:Array[_]}] instead of Code[T,{}] (the

return type explicitly specified for optimize), resulting in a type mismatch;

• using body2 directly instead of body3, without performing the variable substitution: a similar

error as above will be raised, as variable arr is still assumed to be free in body2, propagating

its requirement to the result type of the outer rewriting expression;

• forgetting to transform some array operations: this will simply abort the rewriting and leave

arrays with unexpected usages untouched, ensuring the safety of our transformer; this case

includes when the array “escapes” the current scope, being sent to unknown functions;

• trying to evaluate the size program fragment with size.run: this results in a compile-time

error that reads “cannot prove that <context @ 2:7> =:= {}” (explained in Section 4.3);

• accessing size from outside of the rewriting (e.g., via a mutable variable): since the context

requirement of size is only defined inside the right-hand side of the rewrite rule, size’s type

becomes Code[Int,_] when viewed from the outside, making the term impossible to close.

3 FORMALIZATION OF THE CORE LANGUAGE
This section presents the core ideas of our design of statically-typed analytic quasiquotes, demon-

strating them independently of their Scala embedding. λ { } is a call-by-value multi-stage λ-calculus
with two types of pattern matching on code values: match simply decomposes a term against a

pattern, and rewrite traverses a term bottom-up, applying some transformation on the way.

3.1 Syntax
The syntax of λ { } is given in Figure 2. α is a meta-meta-variable that ranges over meta-variables,

and is used to parametrize the production of q. For now, we only use q ⌊u ⌋ , but in Section 3.3 we will

use a variation. α denotes 0 to n repetitions of ‘α ’ separated by semicolons. let x : T = t0 in t1
is syntactic sugar for (λx : T . t1) t0. To simplify the development, we make the usual assumption

that α-renaming is used whenever needed to prevent shadowing: a context never contains two

distinct bindings x : T and y : S such that x = y. This allows us to equate contexts with finite

partial functions from variable names to types. For example, we use ∅ for the empty context {} and

Γ ∪ Γ′ for context extension. Type ascriptions are used to disambiguate types when necessary.

Examples.As a first example of a λ { } program, we give below a simple optimization that transforms

an expression of the form pow x 2 into x * x. We assume the existence of constants ‘pow’ and ‘*’ for

integer power and multiplication, respectively:

λx : Code Int ∅. x match ⌈pow ⌊y⌋ 2⌉ ⇒ ⌈let z = ⌊y⌋ in z ∗ z⌉ else x

The function above takes a code value x and pattern-matches it against the power-of-2 pattern,

binding the program fragment extracted as the base to variable y. If the pattern matches, a program

is returned that consists in the binding of the code value represented by y to some variable z, that
is then multiplied with itself (this avoids duplicating the computations potentially contained in y).
If the pattern does not match, the original code value x is simply returned unchanged.

In λ { } , free variables present in quoted terms do not require a special syntax, so for example

code"(?x:Int)+1" is written just ⌈x + 1⌉. The closex construct makes sure that a term contains no

free variable x , otherwise defaulting to the associated else branch. To illustrate the use of open

terms and show a speculative rewrite rule, we take inspiration from the rewriting of Figure 1,

11
In Scala, an underscore in type position stands for an existential: Array[_] stands for Array[t] forSome { type t }.
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qα ::= Parametrized Term
n Integer Literal
| t + t Addition
| x ,y, z Variable
| t t Application
| λx : T . t Lambda Abstraction
| ⌈q ⌊u ⌋⌉ Quote
| run t Code Evaluation
| t match ⌈t⌉ ⇒ t else t Pattern Matching
| t rewrite ⌈t⌉ ⇒ t Term Rewriting
| closex t else t Speculative Closure
| t : T Type Ascription
| α Parametrized Rule

t ::= q ⌊u ⌋ Term
u ::= Unquotable

x Variable
| const x Lifted Constant

T , S ::= Type
Int Integer
| T→ T Function
| Code T C Code

C, Γ ::= { c } Context
c ::= Context Member

x : T Binding
| x Context Brand

Fig. 2. Syntax of λ { } .

which matches usages of an extruded variable arr and replaces them with usages of different free

variables a and b. We assume the language is extended with types ‘Array’ and ‘PairArray’ (similar

to Array[Int] and Array[(Int,Int)] in Scala), and with constants ‘mkPairArray’, ‘mkArray’, ‘size’,

‘get’, and ‘first’ with the expected semantics. An incomplete version of the rewriting of Figure 1,

where we handle only two cases (namely size and get-first), is given below:

pgrm rewrite ⌈let arr = mkPairArray ⌊n⌋ in ⌊body⌋⌉ ⇒
let a = ⌈a : Array⌉ in

let body
2
= body rewrite ⌈size arr⌉ ⇒ ⌈size ⌊a⌋⌉

rewrite ⌈first (get arr ⌊i⌋)⌉ ⇒ ⌈get ⌊a⌋ ⌊i⌋⌉ in

closearr ⌈let a = mkArray ⌊n⌋ in ⌊body
2
⌋⌉ else pgrm

The program above proceeds in much the same way as in Figure 1. For example, given some pgrm =
⌈let x = mkPairArray 3 in first (get x 0) + second (get x 1)⌉, after the outer pattern matches, we

get body = ⌈first (get arr 0) + second (get arr 1)⌉, which is subsequently rewritten into body
2
=

⌈get a 0 + second (get arr 1)⌉, and then closearr is called on a term that still contains references to

arr (as we are missing the rule to rewrite uses of second), aborting the rewriting as expected.

3.2 Type System
The typing rules of λ { } are presented in Figure 3. Typing judgment Γ ⊢ t : T ⊣ Γ′ is read “under

inner context Γ and outer context Γ′, t has type T ” (see explanations below). Syntax ⊢ t : T is

shorthand for ∅ ⊢ t : T , and Γ ⊢ t : T stands for Γ ⊢ t : T ⊣ ∅.

Quoting and unquoting.We use a “double-headed” typing judgment in order to type the term

inside a quote as having its own, inner context (on the left), while remembering the outer context

from outside the quote (on the right). The inner context is the usual typing context, accounting

for free variables. Free variables in a quote may be bound by a lambda abstraction, or may remain

free and become part of the quoted term’s context requirements. The outer context is used to type

unquotes, which refer to the context outside of the quotation. Since unquotes can only contain

identifiers, they cannot be nested so we only need to carry a single outer context even though

λ { } is a multi-stage language. This syntactic restriction does not incur a loss of generality, as a

nested unquote such as ⌈...⌊ f ⌊x0⌋⌋ ...⌉ can always be encoded by using an intermediate binding:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 13. Publication date: January 2018.



Unifying Analytic and Statically-TypedQuasiquotes 13:11

let x1 = f ⌊x0⌋ in ⌈...⌊x1⌋ ...⌉. Notice how in T-Quote, the outer context of t becomes the inner

context of ⌈t⌉ while the inner context becomes part of the Code type of ⌈t⌉, and how in T-Anti, the
context parameter of unquoted code has to coincide with the inner context of surrounding code.

Running Code. Rule T-Run requires the context of program fragment t in run t to be empty. This

is central to avoiding the occurrence of unbound reference errors at runtime. For example, the term

run ⌈x + 1⌉ is not typeable, similar to how code"(?x:Int)+1".run is rejected by Squid.

Pattern Matching. Rule T-Mat needs to ensure two important properties:

• Unquotes in a pattern capture the local context surrounding them. For example, for some

z : Code Int ∅ in program z match ⌈λx : Int. ⌊y⌋ + 1⌉ ⇒ y else ⌈0⌉, the type of extracted
variable y should be Code Int { x : Int }; indeed, y can be used to extract terms containing

references to x (in particular, when z = ⌈λx : Int. x + 1⌉ we get y = ⌈x⌉). This is achieved
by typing the pattern tp with outer context Γ′ (so that Γ′ contains the extracted variables)

and then typing the body tb in the original context Γ extended with Γ′. Because T-Anti
requires the unquoted variable’s context parameter to exactly coincide with the local context

surrounding the unquote, Γ′ has to contain variables whose types reflect the exact context

from which they were extracted. It is important for T-Anti not to allow widening of the

unquoted variable’s type: though it would make sense in expressions, it would also allow

the types of terms extracted from patterns to “forget” about their local context requirements

(in the previous example, y could be assigned type Code Int ∅).12 As a result, expression

λx : Code Int ∅. ⌈λy : Int. ⌊x⌋⌉ is not typeable, but this is not a practical limitation, since

one can use an intermediate binding allowing subsumption (T-Sub) to widen the context of x
as needed, as in: λx : Code Int ∅. let z : Code Int {y : Int } = x in ⌈λy : Int. ⌊z⌋⌉.

• Extracted variables propagate the scrutinee’s own context requirements. For example, con-

sider t = ⌈x + 1⌉ match ⌈⌊y⌋ + 1⌉ ⇒ y else ⌈0⌉, which extracts a subterm from a program

fragment containing free variable x . Term t should have type Code Int { x : Int } since x is

free in the result ⌈x⌉. This is achieved by adding the original contextC of the scrutinee to the

context of each extracted term in Γ′, written Γ′/C and formally defined below. In the example

above, C = { x : Int }, Γ′ = {y : Code Int ∅ } and so Γ′′ = Γ′/C = {y : Code Int { x : Int } }.

Definition 3.1 (Context predication Γ/C).

Γ/C
def

=
{
(x : f (T ,C )) | (x : T ) ∈ Γ

}
where f (T ,C ) =




Code T ′ (C ∪ C ′) if T = Code T ′ C ′

T otherwise

Definition 3.2 (Canonical context ⊣∗ Γ′). We write Γ ⊢ t : T ⊣∗ Γ′ instead of Γ ⊢ t : T ⊣ Γ′ to
require that Γ′ be a smallest context satisfying the typing judgment.

13

Γ ⊢ t : T ⊣∗ Γ′
def

= Γ ⊢ t : T ⊣ Γ′ ∧ (∄Γ′′. Γ ⊢ t : T ⊣ Γ′′ ∧ |Γ′′ | < |Γ′ |)

In rule T-Mat, we require pattern code tp to be typed only with the smallest outer context possible,

otherwise called canonical context. Indeed, by weakening, a pattern such as tp = ⌊x⌋ + 1 can not

only be typed with outer context { x : Code Int ∅ }, but also with, e.g., { x : Code Int ∅; y : Int }.

We have to reject the latter, as it would introduce a spurious variable y into the scope of body tb ,
whereas no y was actually extracted from tp . Intuitively, this is because when typing a pattern the

12
Another approach could be to change the premise of T-Anti to Γ′ ⊢ x : Code T Γ and to add a “flag” to the typing judgment

that specifies whether we are typing an expression (where T-Sub is allowed to happen), or a pattern (where it is not).

13
Notation |Γ |, based on the interpretation of contexts as sets, denotes the number of context members c in Γ.
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Typing Rules

T-Var

(x : T ) ∈ Γ

Γ ⊢ x : T ⊣ Γ0
T-Lit

Γ ⊢ n : Int ⊣ Γ0
T-Asc

Γ ⊢ t : T ⊣ Γ0

Γ ⊢ (t : T ) : T ⊣ Γ0

T-App

Γ ⊢ tf : T→ S ⊣ Γ0 Γ ⊢ ta : T ⊣ Γ0

Γ ⊢ tf ta : S ⊣ Γ0
T-Lam

Γ ∪ { x : T } ⊢ t : S ⊣ Γ0

Γ ⊢ (λx : T . t ) : T→ S ⊣ Γ0

T-Quote

C ⊢ t : T ⊣ Γ

Γ ⊢ ⌈t⌉ : Code T C ⊣ Γ0
T-Anti

(x : Code T Γ) ∈ Γ′

Γ ⊢ ⌊x⌋ : T ⊣ Γ′
T-Anti’

(x : Int) ∈ Γ′

Γ ⊢ ⌊const x⌋ : Int ⊣ Γ′

T-Plus

Γ ⊢ t0 : Int ⊣ Γ0 Γ ⊢ t1 : Int ⊣ Γ0

Γ ⊢ t0 + t1 : Int ⊣ Γ0
T-Mat

Γ ⊢ ts : Code T C ⊣ Γ0 Γ′′ = Γ′/C Γ ⊢ te : T ⊣ Γ0
C ⊢ tp : T ⊣∗ Γ′ Γ ∪ Γ′′ ⊢ tb : T ⊣ Γ0

Γ ⊢ ts match ⌈tp ⌉ ⇒ tb else te : T ⊣ Γ0

T-Sub

Γ ⊢ t : T0 ⊣ Γ0 T0 <: T1

Γ ⊢ t : T1 ⊣ Γ0
T-Rwr

Γ ⊢ ts : Code T C ⊣ Γ0 Γ′′ = Γ′/(C ∪ {y }) y < C
C ⊢ tp : T ′ ⊣∗ Γ′ Γ ∪ Γ′′ ⊢ tb : Code T ′ (C ∪ {y }) ⊣ Γ0

Γ ⊢ ts rewrite ⌈tp ⌉ ⇒ tb : Code T C ⊣ Γ0

T-Close

Γ ⊢ t : Code T (C ∪ { x : S }) ⊣ Γ0 Γ ⊢ t ′ : Code T C ⊣ Γ0

Γ ⊢ closex t else t ′ : Code T C ⊣ Γ0
T-Run

Γ ⊢ t : Code T ∅ ⊣ Γ0

Γ ⊢ run t : T ⊣ Γ0

Subtyping Rules

T-Var

T0 <: T1 C0 ⊆ C1

Code T0 C0 <: Code T1 C1

T-Fun

T0 <: T1 T2 <: T3

T1→ T2 <: T0→ T3
T-Refl

T <: T

Fig. 3. Typing and subtyping rules of λ { } .

outer context serves as a binder for the extracted variables, whereas when typing an expression it

is used as a normal context, where weakening is in order.

Rewriting. The rule for rewriting T-Rwr is similar to T-Mat. The differences are that: T-Rwr does
not require the type of pattern tp to coincide with that of scrutinee ts , because the pattern may

match any sub-term of the scrutinee; T-Rwr requires body tb to be a code value with the same type

as the pattern, as any matched pattern will be replaced by tb . finally, T-Rwr predicates the local
context Γ′′ on C ∪ {y }, where y is some fresh “context brand.” The effect is to introduce y into the

context parameters of all terms extracted from the pattern, which will prevent them from being run:

the only way to eliminate that brand from the context of a term is to use the term as body tb of the

rewriting itself. As a simple example, consider program ⌈λx : Int. x + 1⌉ rewrite ⌈⌊y⌋ + 1⌉ ⇒
let z : Int = run y in ⌈0⌉, which has to be ill-typed because it tries to run the open term ⌈x⌉
extracted as y. Thankfully, T-Rwr types y not as Code Int ∅ but as Code Int {y0 } where y0 is some

fresh brand preventing T-Run from applying. Squid uses a similar mechanism (cf., Section 4.3).

3.3 Operational Semantics

Syntax. Values v are either integer literals, lambda abstractions closing over some contexts (clo-

sures) or quoted code ⌈t⌉ where t does not contain any immediate unquotes (i.e., unquotes that

are not inside a quote), which we write ⌈q∅⌉ where ∅ is the empty production. Value substitution
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E-Var

(x 7→ v ) ∈ γ
γ ⊢ x → v E-App

γ ⊢ ta → va γ ⊢ tf → ⟨λx : T . t, γf ⟩
γf ∪ { x 7→ va } ⊢ t → v

γ ⊢ tf ta → v
E-Lam

γ ⊢ λx : T . t → ⟨λx : T . t, γ ⟩

E-Plus

γ ⊢ t0 → n0 γ ⊢ t1 → n1
n0 + n1 = n3

γ ⊢ t0 + t1 → n3
E-Match

γ ⊢ ts → ⌈t ′s ⌉ t ′s ≫ tp = γb
γ ∪ γb ⊢ tb → v

γ ⊢ ts match ⌈tp ⌉ ⇒ tb else te → v
E-Lit

⊢ n → n

E-Run

γ ⊢ ⌈t ⌉ → ⌈t ′⌉ γ ⊢ t ′ → v

γ ⊢ run ⌈t ⌉ → v
E-NoMatch

γ ⊢ te → v
γ ⊢ ts → ⌈t ′s ⌉ (t ′s , tp ) < dom(≫)

γ ⊢ ts match ⌈tp ⌉ ⇒ tb else te → v
E-Asc

γ ⊢ t → v
γ ⊢ t : T → v

E-Closed

γ ⊢ t → ⌈t ′⌉ x < FV(t ′)

γ ⊢ closex t else te → ⌈t ′⌉
E-Open

γ ⊢ t → ⌈t ′⌉ x ∈ FV(t ′) γ ⊢ te → v
γ ⊢ closex t else te → v

Q-Var

γ ⊢ ⌈x ⌉ → ⌈x ⌉
Q-Lit

⊢ ⌈n ⌉ → ⌈n ⌉
Q-Asc

γ ⊢ ⌈t ⌉ → ⌈t ′⌉

γ ⊢ ⌈t : T ⌉ → ⌈t ′ : T ⌉

Q-App

γ ⊢ ⌈tf ⌉ → ⌈t ′f ⌉
γ ⊢ ⌈ta ⌉ → ⌈t ′a ⌉

γ ⊢ ⌈tf ta ⌉ → ⌈t ′f t
′
a ⌉

Q-Lam

γ ⊢ ⌈t ⌉ → ⌈t ′⌉

γ ⊢ ⌈λx : T . t ⌉ → ⌈λx : T . t ′⌉
Q-Run

γ ⊢ ⌈t ⌉ → ⌈t ′⌉

γ ⊢ ⌈run t ⌉ → ⌈run t ′⌉

Q-Quote

γ ⊢ ⌈ ⌈t ⌉ ⌉ → ⌈⌈t ⌉ ⌉
Q-Anti’

(x 7→ n) ∈ γ

γ ⊢ ⌈ ⌊const x ⌋ ⌉ → ⌈n ⌉
Q-Anti

(x 7→ ⌈t ⌉) ∈ γ

γ ⊢ ⌈ ⌊x ⌋ ⌉ → ⌈t ⌉

Q-Mat

γ ⊢ ⌈ts ⌉ → ⌈t ′s ⌉ γ ⊢ ⌈tb ⌉ → ⌈t ′b ⌉ γ ⊢ ⌈te ⌉ → ⌈t ′e ⌉

γ ⊢ ⌈ts match ⌈tp ⌉ ⇒ tb else te ⌉ → ⌈t ′s match ⌈tp ⌉ ⇒ t ′b else t ′e ⌉

Q-Rwr

γ ⊢ ⌈t ⌉ → ⌈t ′⌉ γ ⊢ ⌈tb ⌉ → ⌈t ′b ⌉

γ ⊢ ⌈t rewrite ⌈tp ⌉ ⇒ tb ⌉ → ⌈t ′ rewrite ⌈tp ⌉ ⇒ t ′b ⌉
Q-Plus

γ ⊢ ⌈t0 ⌉ → ⌈t ′
0
⌉

γ ⊢ ⌈t1 ⌉ → ⌈t ′
1
⌉

γ ⊢ ⌈t0 + t1 ⌉ → ⌈t ′
0
+ t ′

1
⌉

Q-Close

γ ⊢ ⌈t ⌉ → ⌈t ′⌉ γ ⊢ ⌈te ⌉ → ⌈t ′e ⌉

γ ⊢ ⌈closex t else te ⌉ → ⌈closex t ′ else t ′e ⌉

Fig. 4. Basic rules from the big step operational semantics of λ { } .

contexts γ map identifiers to values,
14
and |= is used to express that a value substitution context

conforms to or is consistent with a typing context:

v ::= n | ⟨λx : T . t , γ ⟩ | ⌈q∅⌉

γ ::= { x 7→ v }

∅ |= ∅

Γ |= γ ⊢ v : T

Γ ∪ { x : T } |= γ ∪ { x : v }

T-Clos

Γ |= γ Γ ∪ { x : T } ⊢ t : S

Γ ⊢ ⟨λx : T . t , γ ⟩ : T→ S

E- and Q-Rules. Figure 4 shows the basic big step semantics rules of λ { } . These rules are of the
form γ ⊢ t → v , read “under context γ , t evaluates tov .” E- rules are for current stage code. Q- rules,
which are for next stage code (terms surrounded by one level of quotation), replace immediate

unquotes in quoted code by the values to be unquoted; they can be seen as the β-rule(s) for quotes.
For example { x 7→ ⌈y + 1⌉ } ⊢ ⌈λy : Int. ⌊x⌋⌉ → ⌈λy : Int. y + 1⌉. E-Run takes code from the

next stage and evaluates it as code in the current stage. Rules E-Match and E-NoMatch make use

of partial function ≫ to match a term against a given pattern, producing a value substitution

14
We do not use direct substitution because our syntax prevents expressions from appearing in unquotes, which means we

cannot perform straightforward substitution of expressions for variables. Additionally, contexts interact more intuitively

with the semantics of pattern matching, which introduces a set of bindings to be merged with the current context.
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(t : T ) ≫ (t ′ : S ) = t ≫T t ′ if T <: S (X-Asc)

x ≫T x = ∅ (X-Var)

t ≫T ⌊x ⌋ = { x 7→ ⌈t : T ⌉ } (X-Anti)

n ≫T n = ∅ (X-Lit)

n ≫T ⌊const x ⌋ = { x 7→ n } (X-Anti’)

⌈t ⌉ ≫T ⌈t ⌉ = ∅ (X-Quote)

(λx : S . t ) ≫T (λy : S ′. t ′) = t [x 7→ y] ≫ t ′ (X-Lam)

run t ≫T run t ′ = t ≫ t ′ (X-Run)

(t0 + t1) ≫T (t ′
0
+ t ′

1
) = (t0 ≫ t ′

0
) ⊎ (t1 ≫ t ′

1
) (X-Plus)

(t0 t1) ≫T (t ′
0
t ′
1
) = (t0 ≫ t ′

0
) ⊎ (t1 ≫ t ′

1
) (X-App)

closex t0 else t1 ≫T closex t ′
0
else t ′

1
= (t0 ≫ t ′

0
) ⊎ (t1 ≫ t ′

1
) (X-Close)

ts match ⌈tp ⌉ ⇒ tb else te ≫T t ′s match ⌈tp ⌉ ⇒ t ′b else t ′e = (ts ≫ t ′s ) ⊎ (tb ≫ t ′b ) ⊎ (te ≫ t ′e ) (X-Mat)

ts rewrite ⌈tp ⌉ ⇒ tb ≫
T t ′s rewrite ⌈tp ⌉ ⇒ t ′b = (ts ≫ t ′s ) ⊎ (tb ≫ t ′b ) (X-Rwr)

Fig. 5. Extraction rules for pattern matching in λ { } .

context that contains the results of the matching. For example, ⌈(x : Int→ Int) (123 : Int)⌉ ≫Int

⌈(⌊y⌋ : Int→ Int) (⌊const z⌋ : Int)⌉ = {y 7→ ⌈x : Int⌉; z 7→ 123 }. The definitions of ≫ and ≫T
are

explained later in this section. Rule E-Closed searches for free occurrences of x in its argument

term (where FV is defined as usual for multi-stage languages, for example see [Rhiger 2012b]); it

evaluates to the term unchanged if there are none, and otherwise evaluates to the else branch.

For lack of space, we do not list all the rules for rewrite, as they just go through a term and

transform it by reusing the semantics of pattern matching. Below we only give two examples:

E-R-Lit

t → ⌈n ⌉
γ ⊢ ⌈n ⌉ match ⌈tp ⌉ ⇒ tb else ⌈n ⌉ → v

γ ⊢ t rewrite ⌈tp ⌉ ⇒ tb → v
E-R-Plus

γ ⊢ t → ⌈t0 + t1 ⌉
γ ⊢ ⌈t0 ⌉ rewrite ⌈tp ⌉ ⇒ tb → ⌈t ′0 ⌉
γ ⊢ ⌈t1 ⌉ rewrite ⌈tp ⌉ ⇒ tb → ⌈t ′1 ⌉

γ ⊢ ⌈t ′
0
+ t ′

1
⌉ match ⌈tp ⌉ ⇒ tb else ⌈t ′

0
+ t ′

1
⌉ → v

γ ⊢ t rewrite ⌈tp ⌉ ⇒ tb → v

Rule R-Lit simply applies pattern matching on a constant literal n (as this term has no sub-

expressions); if the pattern does not match, the rule returns the term unchanged. Rule R-Plus
first applies rewrite recursively inside both sides of an addition, and then applies pattern matching

to transform the top-level expression made of the results of these two recursive calls.

Intensional Type Analysis. Similar to Squid (cf., Section 4.6), λ { } performs run-time subtyping

checks to guide pattern matching. For example, pattern ⌈(⌊x⌋ : Int→ Int) ⌊y⌋⌉, where x and y are

typed respectively as Code (Int→ Int) C and Code Int C , should not match a program fragment

such as ⌈(λx0 : Int→ Int. x0) (λx1 : Int. x1)⌉, because the extracted terms would not have the

expected types. In order to enable those runtime checks, we actually perform evaluation not directly

on a source program t , but on its translation JtKΓ′Γ into an explicitly-typed variant of λ { } — a form

where every subterm is annotated with its type as assigned by the typing rules, given inner context

Γ and outer context Γ′. For example, Jx + 1K∅
{ x : Int }

= (x : Int) + (1 : Int) : Int.

Extraction. Figure 5 shows the definitions of partial function ≫ and its helper ≫T
. We write

γ0 ⊎ γ1 for the disjoint union of value substitution contexts γ0 and γ1, which is only defined if their

domains are disjoint, that is to say, dom(γ0) ∩ dom(γ1) = ∅ =⇒ γ0 ⊎ γ1
def

= γ0 ∪ γ1.
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Case X-Var matches two variables with the same name and compatible types, producing an

empty result (as nothing is extracted from this match). For example ⌈x : Code Int ∅⌉ matches

pattern ⌈x : Code Int {y : Int }⌉ because we have Code Int ∅ <: Code Int {y : Int }. On the other

hand, case X-Anti matches anything with a compatible type and extracts it as a code value, which
corresponds to the semantics of unquotes in pattern position.

Particularly interesting is the case X-Lam, which matches two lambda bodies by renaming

variable x bound in the scrutinee to the name of the variable bound in the pattern. This way, any

code extracted by t[x 7→ y] ≫ t ′ will refer to bound variable x of the original term as y, the name

used in the pattern. Remember that we assume sufficient α-renaming to avoid name collisions,

which includes the assumption that y is not already present in t . To enforce hygiene in practice,

Squid uses an elaborate scheme similar to the locally named representation [McBride and McKinna

2004; McKinna and Pollack 1993]. This schemes consists in using different syntactic constructs to

distinguish free variables from bound variables, so that they can never be confused. Interestingly, this

also gives us a way to compare open terms for equivalence – in Squid term equality is implemented

as reciprocal matching t0 ≈ t1
def

= (t0 ≫ t1) = (t1 ≫ t0) = ∅. Closed term equivalence could be

implemented more efficiently using a locally nameless representation [Charguéraud 2012], but as

it is, that representation has some drawbacks in the context of user-defined DSL compilers — for

example, it forgets the original names of variables (which are helpful when debugging).

3.4 Soundness of λ { }

Top-Level Evaluation. We write t ⇓ v the annotation and evaluation of program t down to value

v , an abbreviation of ∅ ⊢ JtK∅
∅
→ v . Note that in the proofs below, we refer to terms t with no

assumptions on whether they are in an annotated form or not, because that is not a requirement for

the soundness of λ { } . Failing to annotate a program before evaluating it will not result in evaluation

getting stuck, however it may result in a different evaluation result, as partial function≫ is not

defined on terms lacking explicit type annotations.

Canonical Forms. Since the type system admits a subtyping rule (T-Sub) and a reflexive subtyping
relation, inverting the typing judgment always yields multiple possibilities, including the use of

T-Sub. This leads to some bureaucracy in the proofs, forcing us to take care of the subtyping case

in addition to the main case.

To help with that issue, we introduce an inversion lemma for the subtyping relation:

Lemma 3.3 (Subtyping inversion). If S <: T , then S is a pointwise-subtype of T , define as:

• S has the same type constructor as T
• Then, depending on T :
– if T = Int, then S = Int

– if T = T1→ T2, then S = S1→ S2 with T1 <: S1 and S2 <: T2
– if T = Code T ′ CT , then S = Code S ′ CS with S ′ <: T ′ and CS ⊆ CT

Proof. By induction on derivations of S <: T . □

Notice that, because S and T are so tightly coupled, the "upward" version of lemma 3.3 is also

admissible (where we do a case analysis on S to infer T ’s shape).
Thanks to this lemma, we know that T-Sub preserves the type constructor and can only replace

its arguments by subtypes of theirs (or supertypes in contravariant positions). In the following,

when it is clear that a property is preserved by subtyping thanks to this lemma, we may use the

phrase “modulo subtyping” as a shorthand.
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Remark 1 (InversionModulo Subtyping). Lemma 3.3 has an important consequence. First, notice
that for any term shape t , only one typing rule R applies aside from T-Sub — essentially, the system is
syntax-directed modulo subtpying. Thus, we know precisely the structure of any type derivation for
terms of that shape: it ends with R followed by an arbitrary number of instances of T-Sub.
Now, applying the lemma to that observation means that all instances of T-Sub in that derivation

yield pointwise-subtypes, which is a reflexive and transitive relation. Therefore, inverting the typing
assumption yields the use of R, just slightly weakened — the type of t is replaced by an arbitrary
pointwise-subtype (both in the premises and the conclusion).

Lemma 3.4 (Preservation for annotation). If Γ ⊢ t : T ⊣ Γ′, then Γ ⊢ JtKΓ′Γ : T ⊣ Γ′.

Proof. By induction on derivations of Γ ⊢ t : T ⊣ Γ′ and definition of JtKΓ′Γ . □

Lemma 3.5 (Canonical Forms). If t = v and ⊢ t : T , then
• if T = Int, then t = n for some n
• if T = T1→ T2, then t = ⟨λx : T1. t , γ ⟩ for some x and t1
• if T = Code T ′ C , then t = ⌈t ′⌉, for some t ′ such that C ⊢ t ′ : T ′ ⊣

Proof. By induction on the typing rules and the syntax of values, modulo subtyping. □

We will also need the following lemma about the type of a quote.

Lemma 3.6 (Inversion for qotes). If Γ ⊢ ⌈t⌉ : T , then there exists T0,T1,C0,C1 such that
T = Code T1 C1 and C0 ⊢ t : T0 ⊣ Γ, with T0 <: T1 and C0 ⊆ C1.

Proof. By induction on the typing derivation. There are only 2 cases that apply: T-Sub, which is

immediate by 3.3 and by transitivity of both <: and ⊆; and the base case, T-Quote, which allows to

conclude thanks to the reflexivity of those relations. □

For the proof of preservation, we first need the following lemma.

Lemma 3.7 (Evaluation toqotes yields values). For any value substitution contextγ and term t ,
if γ ⊢ t → ⌈t ′⌉, then ⌈t ′⌉ ∈ v . I.e., a term never evaluates to a quote containing immediate unquotes.

Proof. By induction on the reduction. E-Asc and Q-Asc are immediate by induction on their

unique premise, E-Closed on its first. All the other E-∗ rules are immediate, since none produces an

unspecified quoted term; thus, all the ones which can apply (producing a value v) are obviously
correct. The only interesting Q-∗ rule is Q-Anti, which is solved by the observation that γ maps

identifier to values, applied to the first premise. Q-Anti’ is trivial since the resulting quote is a value.
All the other Q-∗ rules are solved directly because they are essentially congruence rules - under the

assumption that no sub-term contains an immediate unquote after reduction, then the term itself

can’t contain one either (after reduction, again). □

Lemma 3.8 (Preservation — general). Evaluation in conforming contexts preserves typing: If
γ ⊢ t → v then for all Γ, Γ′, T such that Γ |= γ and Γ ⊢ t : T ⊣ Γ′, one has Γ ⊢ v : T .

Proof. By induction on the evaluation derivation. (We replace t by the notations used in the

typing & evaluation rules)

Case E-Var Since x is typable in Γ, then Γ(x ) = T . We conclude by conformance of γ to Γ.
Case E-Lit, Q-Lit, Q-Var, Q-Quote These cases are immediate since v evaluates to itself.

Case E-Ignore By remark 1, inverting the judgment Γ ⊢ (t : T ) : T ⊣ Γ′ yields Γ ⊢ t : S ⊣ Γ′, with
S <: T . By induction hypothesis on that judgment, v has type S as well — and T by T-Sub.
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Case E-Lam By inversion modulo subtyping, we get that T = T1→ T2 and that there exists S1 and
S2 such that T1 <: S1, S2 <: T2 and Γ ⊢ λx : S1. t : S1→ S2. The resulting closure v is typed

via T-Clos and T-Sub; the second premise of T-Clos is exactly the same as the one of T-Lam,

and the first premise is provided by the assumption that Γ |= γ .
Case E-App By remark 1, we inverse the typing judgment and obtain the judgments Γ ⊢ tf : T ′→ S ′

and Γ ⊢ ta : T ′′, with S ′ <: S and T ′′ <: T <: T ′. By induction on the first 2 premises, the

closure has the same type than tf , namely T ′→ S ′, and va has the same type than ta , T
′
.

Notice that Γ ∪ { x : T } |= γ ∪ { x 7→ va }. The context exactly coincides with the one of rule

T-Clos for the closure (by inversion and remark 1 again). The conclusion follows by induction

on the last premise.

Case E-Plus By inversion of the typing judgment, we get that both t0 and t1 have type Int. By
induction and the canonical forms lemma, they reduce to two constants n0 and n1.

Case E-Run By the inversion lemma for quotes, the type of t is Code T ′ C ′ for some T ′ and C ′.
By induction on the first premise, ⌈t ′⌉ (which is a value) has the same type as ⌈t⌉, namely

Code T ′ C ′. This in turn gives us that t ′ has type S , with S <: T ′. Hence, by induction on the

second premise, v has type S ; thus also type T ′ by T-Sub — but T ′ is also the type of run t .
Case E-Match By inversion modulo subtyping, the base case must be T-Mat with return type S ,

where S <: T . This gives us the right typing judgment on tb to use with the corresponding

induction hypothesis (on the evaluation of tb ), provided we show that Γb |= γb . This is
obtained from the typing judgment on tp and the definition of Γ′′ in T-Mat, and the definition
of γb in E-Match (i.e., from the matching rule). Thus, v has type S , and also T by T-Sub.

Case E-NoMatch This case is similar to the last one, even slightly simpler (no context extension)

Cases E-Rw-∗ All these rules are handled in a similar fashion. First, by inversionmodulo subtyping,

we get that the base case must be T-Rwr. We also apply the induction hypothesis to the first

premise, the one asserting the reduction of the scrutinee - invoking lemma 3.7 if necessary.

This allows, after inverting (modulo subtyping) the typing hypothesis we just derived, to

apply induction on any sub-rewrite premise. This ensures that the sub-terms of the scrutinee

(in the last premise) have the correct type. One concludes by induction on the last premise.

Case E-Closed By inversion modulo subtyping, one gets Γ ⊢ t : Code T ′ C ′ ⊣ Γ′, with T ′ <: T and

C ′ ⊆ C ∪ {x : S }. By induction on the first premise, one get that ⌈t ′⌉ has the same type. If

x : S ∈ C ′, it is easy to see that ⌈t ′⌉ can also be given the subtype Code T ′ (C ′ \ {x : S }), by
the second premise of E-Closed. We conclude by applying T-Sub if necessary.

Case E-Open By inversion modulo subtyping, one gets Γ ⊢ t : Code T ′ C ′ ⊣ Γ′, with T ′ <: T and

C ′ ⊆ C . We conclude by induction hypothesis on the last premise, using T-Sub if necessary.
Case Q-Anti Again by remark 1, inverting the typing judgment on ⌈⌊x⌋⌉ yields that it has type

Code T ′ C ′, and that C ′ ⊢ ⌊x⌋ : T ′ ⊣ Γ with T ′ <: T . Inverting that premise again gives us

x : Code T ′′ C ′ ∈ Γ with T ′′ <: T ′. Since x 7→ ⌈t⌉ ∈ γ (premise of Q-Anti) and Γ |= γ , we get
that ⌈t⌉ is a value of type Code T ′′ C ′ in Γ. We conclude by applying T-Sub if necessary.

Case Q-Anti’ By inversion modulo subtyping and since Int has itself as only subtype/supertype,

we have Γ ⊢ ⌈⌊const x⌋⌉ : Code Int C , as well as C ⊢ ⌊const x⌋ : Int ⊣ Γ (T-Quote), and
x : Int ∈ Γ (T-Anti’). We conclude by recalling that Γ |= γ .

All the remaining Q-∗ cases, which all apply to quoted terms, are handled the same way.

Each of these cases has premises of the form ⌈t⌉ → ⌈t ′⌉. Thanks to 3.7, we show that such ⌈t ′⌉
terms are always values. Thus, we get an induction hypothesis for all such premises (since, by

inversion modulo subtyping, the base case for all premises is always T-Quote), and we conclude by

mirroring the input type derivation for the reduced term, applying T-Sub whenever necessary. □

We get preservation as an immediate corollary:
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Theorem 3.9 (Type Preservation). If ⊢ t : T and t ⇓ v , then ⊢ v : T .

Proof. By Lemmas 3.4 and 3.8. Notice that by definition ∅ |= ∅. □

In big step semantics, to distinguish between terms diverging and terms getting stuck, it is

customary to extend the syntax with an error value err (syntax ve ::= v | err) and add rules to, on

the one hand, generate errors when no original rule applies, and on the other to propagate errors.

Then, progress is the property that if a well-typed program evaluates to a value, that value is not an

error. The error-related rules for λ { } are standard, unsurprising, and omitted for lack of space.

For the proof of progress, we first need a version of it that only applies to quoted terms, and

assert that they all reduce to quoted terms.

Lemma 3.10 (Quote Progress). For any contexts Γ and Γ′, value substitution context γ such that
Γ |= γ , and every term t such that Γ′ ⊢ t : T ⊣ Γ, there exists t ′ such that γ ⊢ ⌈t⌉ → ⌈t ′⌉.

Proof. By induction on Γ ⊢ t : T . T-Anti and T-Anti’ both work thanks to their corresponding

Q-_ rules and the assumption that Γ |= γ . The base cases T-Var, T-Lit and T-Quote are trivial by the

associated Q-_ rules. All the other cases are equally easy, since they don’t affect the outer context,

and corresponding Q-_ rules act as congruences. Notice that this remark also apply to T-Mat and
T-Rwr — the only premise where they modify the outer contexts are for the branches, but these are

also left untouched by the associated Q-_ rules. □

Finally, we will also rely implicitly on the fact that the evaluation relation is deterministic.

Lemma 3.11 (Progress — general). Assume Γ |= γ . For any fully annotated term t , if Γ ⊢ t : T
and γ ⊢ t → ve , then ve , err.

Proof. By induction on the typing derivation. To be precise, we use a strong induction on the

size of the derivation. Most cases can be solved simply by a structural induction, and we handle

them in this style; but one case (T-Run) requires a slightly more general induction principle.

Case T-Var Immediate by conformance of γ to Γ.
Case T-Lit Immediate since t is a non-quote value (and these never step).

Case T-Run From the unique premise, Γ ⊢ t : Code T ∅. By inversion modulo subtyping, t has
shape ⌈s⌉, for some s such that ∅ ⊢ s : T ⊣ Γ. By lemma 3.10, we get s ′ such thatγ ⊢ ⌈s⌉ → ⌈s ′⌉.
It is an easy result that preservation applied to a reduction of this shape yields a derivation

for Γ ⊢ ⌈s ′⌉ : Code T ∅ of size lesser or equal to this of Γ ⊢ ⌈s⌉ : Code T ∅ (even further: one

can always type s ′ with a sub-derivation of this of s). Hence, by induction, we get that for all

vs
′

e such that γ ⊢ s → vs
′

e , v
s ′
e is not an error; and ve = v

s ′
e .

Case T-Lam t evaluates to the corresponding closure, by rule E-Lam (and closures are values).

Case T-App By induction on the premises and preservation, we get 2 values of the corresponding

types. By canonical forms on the value obtained for tf , it is a closure with the appropriate

argument type (or a supertype thereof). By induction on its typing derivation, the body

reduces without error, with the argument added to the context. We conclude via E-App.
Case T-Asc Immediate from the induction hypothesis on the unique premise.

Case T-Quote By combining lemmas 3.7 and 3.10.

Cases T-Anti and T-Anti’ Impossible since the right context is empty.

Case T-Plus By the induction, inversion modulo subtyping, canonical forms and E-Plus.
Case T-Mat By induction on the first premise, if the scrutinee evaluates to a value, it is not an

error. By preservation and canonical forms, this value is a quoted term; we also assumed that

t was fully annotated; thus the dynamic matching check doesn’t return an error. Depending

on the result, we keep evaluating either tb or te . Importantly, the branch tp can not forget the
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dependency in any variable being matched, since T-Anti doesn’t allow subtyping the type of

the unquoted term (and since contexts can not be weakened). This is a critical requirement, or

else we could "forget" variable requirements about surrounding variables, making≫ unsafe

and thus letting us try to run open code. By induction on the 2 corresponding premises

(T-Mat), both cases evaluate safely.

Case T-Rwr Like in T-Mat, the scrutinee evaluates safely (if ever). The reduction is split across

multiple rules, but the reasoning is essentially the same as in the pattern matching case. One

may have to perform more inversion on the typing hypothesis (to match the structure of

the rewriting being performed — this is proved by induction on the rewriting rules), and

conclude from the associated induction hypotheses.

Case T-Sub Follows immediately from the induction hypothesis.

Case T-Close By induction (first premise), preservation and canonical forms, if t → v then v has

shape ⌈t ′⌉. Then, check whether x ∈ FV(t ′). If not, an easy result shows that ⌈t ′⌉ also has

type Code T C (removing the uses of T-Sub that add x). We conclude by E-Closed. If, on the

other hand, x is in FV(t ′), we conclude by induction (second premise of T-Close) and E-Open.
□

Theorem 3.12 (Progress). If ⊢ t : T and t ⇓ ve , then ve , err.

Proof. By Lemma 3.11. Notice that by definition ∅ |= ∅. □

3.5 Extensions
In this section, we present possible extensions to λ { } that are left as future work.

Imperative Effects. To better mirror the capabilities of Squid, we could add imperative features

to λ { } such as mutable references. We expect this change to be straightforward and unproblematic;

effects caused problems in work such as the original MetaML because the meaning of identifiers in

program fragments was derived from the lexical scoping of the quotes — i.e., code values could

not safely leave their scopes at runtime — and mutable references as well as exceptions could be

used to violate this lexical scoping (pulling values out into the heap). However, various works have

since shown [Kameyama et al. 2014; Kiselyov et al. 2016; Rhiger 2012b] that properly reflecting

scope dependencies inside the types of program fragments was sufficient to solve the problem.

Type-Parametric Matching. As seen in Section 2.2, Squid has the ability to define patterns which

extract type, in addition to terms. Extending λ { } with this functionality would require the extension

of the type language to allow ⌊T ⌋ and ⌈T ⌉, and in order to prevent mixing up distinct extracted

types we would need a mechanism to prevent extracted types from “escaping” the pattern matching

branch in which they are available. Below is an example use of this feature:

⌈(λx : Int. x + 1) 42⌉ match ⌈(⌊x⌋ : ⌊T ⌋→ Int) ⌊y⌋⌉ ⇒ ⌈⌊x⌋ ⌊y⌋ + ⌊x⌋ ⌊y⌋⌉ else ⌈0⌉

Context Polymorphism. Squid’s support for context polymorphism (also called support polymor-
phism [Nanevski 2002]) is presented in Section 4.3, and in Section 4.4 we show a technique to

enforce the hygiene of that feature based on implicit evidence propagation. We believe that it would

be straightforward to include an ad hoc version of this evidence propagation scheme in the type

system of λ { } , along with explicit constructs for introducing and eliminating context parameters.

4 EMBEDDING IN SCALA
This section is aimed at giving the reader a better understanding of the mechanisms underlying

Squid, as well as giving prospective implementers of advanced type system techniques insights
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on how Scala facilitates such endeavors. The main takeaway is that the combination of a flexible

type system with an advanced type-aware macro system can go a long way towards implementing

advanced statically-typed features without modifying the host language’s compiler.

4.1 Compilation of SquidQuasiquotes
Squid quasiquotes are implemented as macros that perform parsing and type-checking of quoted

fragments, compute and check associated types and contexts, and produce the Scala code necessary

to reconstruct the program fragments at runtime encoded in Squid’s intermediate representation.

Basic Expansion. To understand how Squid quasiquotes are compiled, let us start with a simple

example, code"Math.pow($x,2)", where some value x is in scope with type Code[Int,{}]. In Scala, this

expression is conceptually equivalent to a simple invocation of the form code(List("Math.pow(",

",2)"), x). code being a macro, it executes at compile-time. The first thing it does is to interpret

the strings passed in its first argument as a Scala code snippet. To do this, it reconstitutes the

fragment as "Math.pow(hole[Int,{}](0),2)" and parses it using the Scala parser. hole[Int,{}](0)

represents the unquoted value x, where type arguments Int and {} were retrieved from its type in

the current scope, and 0 is a unique identifier associated to the unquote. This snippet of code is then

type checked using Scala’s type checker, given signature def hole[T,C]: T. In this case, we end

up with "java.lang.Math.pow(hole[Int,{}](0).toDouble,2.0)", typed Double. Notice the insertion

of toDouble as a result of type checking: similarly, the Scala type checker adds missing type

parameters, inferred implicit arguments, fully-qualified names, etc. An analysis phase mirroring

the rules presented in Section 3.2 then goes through the typed AST and infers which free variables

of the inserted terms are captured, as well as the context of the resulting quoted term, here {}.

The next step is to lift this typed AST into a program that reconstructs it at runtime. During

this process, hole[Int,{}](0) is replaced with x.impl, where method impl accesses the underlying

implementation of a code fragment. We give below a simplified version of the code that is produced:

val Math = staticObject("java.lang.Math")

val Math_pow = methodSymbol("java.lang.Math.pow")

val res = methodApp(Math, Math_pow, x.impl, Constant(2.0))

new Code[Double,{}](impl = res)

Where class Code[+T,-C](impl: Impl) is a typed wrapper that hides its internal untyped code

representation impl. The expansion of quasiquotes in pattern position is very similar, desugaring to

a call to the extract method that takes a pattern AST, a scrutinee AST and produces either nothing

if the matching failed, or a mapping from extracted term names to extracted code fragments and

extracted type names to extracted type representations.

Type-Parametric Matching. Type-parametric matching (Section 2.2) uses the ability of Scala to

reason about path-dependent types, which are types that may live in arbitrary objects, including

local ones (this is a similar concept to first-class modules in ML). Squid assigns to an extracted

type representation t the module type CodeType that contains an abstract type member Typ (a

type declaration without a definition). Then, Squid type checks the pattern using references to

t.Typ. In essence, t.Typ — which can only be referred to within the scope of the pattern matching

branch where t is extracted — is existentially quantified, which is the correct interpretation of

type-parametric matchings. For example, assuming pgrm has type Code[Any,{}], in the code below:

pgrm match { case code"List[$t]($a,$b)" => print(t) /* t is a term here */ ; code"List($b,$a)" }
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the pattern is type checked as having type List[t.Typ], and therefore the right-hand side of the

match sees a scope with extracted variables {t: CodeType; a: Code[t.Typ,{}]; b: Code[t.Typ,{}]}.

The return type of this example is Code[List[_],{}]— thewildcard in List[_] stands for an unknown

type (an existential without a path). This is because the local type representation module t is

invisible from outside the scope of pattern matching branch, which ensures that extracted types

from different patterns or even from different runs of a match cannot be mixed with one another.

4.2 Required Properties of the Macro System
In order to achieve its goals of static safety, the Squid quasiquote system relies essentially on two

features of the host language’s macro system:

• The ability to query type information and invoke the type checker during macro expansion:

it should be possible to query the type of unquoted expressions in order to properly type

check the quote. Additionally but not essentially, Squid accesses the type of the scrutinee in

pattern matching (cf., Section 2.1) and type-checks a quoted program fragment in the same

scope as the quote itself, which is why we can write {import Math.pow; code"pow($x,2)"}.

• The ability to refine the type of expanded macros: since both the type and the context

requirements of program fragments are computed during macro expansion, it must be

possible for the compiler to expand a macro call before knowing its final type, and use the

precise type of the expansion to type check the rest of the program.

4.3 Context Requirements

Contexts as Contravariant Structural Types. The type of quoted terms Code[T,C] is defined as

type Code[+Typ, -Ctx], which exhibits that it is covariant in its Typ parameter, and contravariant in

Ctx. Scala applies the traditional rules for structural subtyping so that, for example, for all types X
and Y where X :> Y , we have {} :> { a : X } :> { a : Y }. Therefore, by Scala’s subtyping rules,

for all T we also have Code[T , {}] <: Code[T , { a : X }] <: Code[T , { a : Y }].
In other words, a term that requires some context C can be used in place of a term that requires

some more specific context D <: C . In particular, a closed term, which requires no context (written

{}), can be used in place of a term that requires any context. This subsumption principle is also

sometimes called weakening [Rhiger 2012b] or type widening, and is important for the flexibility of

the quasiquotes API. It is directly reflected in λ { } by typing rule T-Var presented in Section 3.2.

Context Polymorphism. A consequence of this encoding of contexts as Scala types means that

we can abstract over contexts the same way we abstract over other types. In addition, Scala has a

concept of intersection types, whereA & B represents the intersection of typesA and B. This means

we can express refinements on abstract contexts by intersecting an abstract context parameter C
and a structural type such as { x : T }, as in C & { x : T }, also simply written C{ x : T }. This allows
Squid users to express useful context-parametric functions, such as intro and outro below:15

def intro[C](n: Code[Int, C]) = code"(?s: String) take $n"

def outro[C](m: Code[String, C{ s: String }]) = code" (s: String) => $m"

The return type inferred for intro is Code[String,C{s: String}], because the context requirement

C introduced by n is propagated to the main term, but that context is extended with the new

requirement for a free variable s of type String, introduced by the (?s : String) syntax. The return

type inferred for outro is Code[String => String,C], because the s variable in the context requirement

15
Note that in Scala, str.take(n) represents the n first characters of a string str, or str if str.length < n. This method

is added via an implicit conversion, but our quasiquotes allow us to ignore it completely.
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of m is captured by the lambda abstraction (s: String) => .... The following interactive session

demonstrates the usage of these definitions:

val a = code"?x : Int" : Code[Int, {x: Int}] → code"?x"

val b = intro(a) : Code[Int, {s: String; x: Int}] → code"?s take ?x"

val c = outro[{x:Int}](b) : Code[String=>String,{x:Int}] → code"(s:String)=> s take ?x"

code"val x = 12; $c" : Code[String=>String,{}] → code"x = 12; (s:String) => s take x"

TermRewriting. Squid’s rewritemacro, which allows the recursive transformation of all subterms

of a program, has to make sure that intermediate extracted subterms are only used in the context

from where they were extracted, otherwise this would result in unsafe scope extrusion. This is

achieved by making the context matched by each case of the rewrite rule a refinement on some

abstract context type that is only usable within the pattern matching branch. For example, in the

program below the type of extracted variables n and m is Code[Int,<context @ 2:15>{y:Int}]. Type

<context @ 2:15>, where 2:15 refers to the line and column of the rewrite rule case, is a local context

synthesized by Squid (akin to t.Typ in Section 4.1) that is only valid within the pattern matching

branch. This context is refined with {y:Int}, the context requirement of the rewritten term pgrm.

val pgrm = code"val x: Int = ?y ; println(x + ?y)"

pgrm rewrite { case code"($n:Int) + ($m:Int)" => code"(-$m - $n) * (?z : Int)" }

The return type of the expression above is Code[Int,{y:Int;z:Int}] because the rewrite rule added

free variable z to the context of its result, inferred as <context @ 2:15>{y:Int;z:Int}. This is similar

to how rule T-Rwr in Figure 3 expects the body of the rewriting to contain context brand y, and
removes that brand from the final result.

4.4 Type-Level Computations and Evidence

Context Disjointness. A problem with context polymorphism as presented above arises when a

refined abstract context is instantiated with a concrete type that is incompatible with the refinement.

An example of this would be the call intro(code"?s : Int"), whose result type would be the

problematic structural type {s: Int & String}. This type is simply not a realizable context, making

the result of such a call unusable. An actual, subtler problem arises when we refine a context viewed

as abstract with a variable that it already contains, and capture this variable before the context type
is concretized. An example of this can be composed with the intro and outro seen above:

def compose[C](x: Code[Int, C]) = outro(intro(x))

compose(code"?s : Int") : Code[String => String, {s: Int}] → code"(s: String) => s take s"

Observe that the result code"(s: String) => s take s" is ill-typed! The problem is that we introduce

a mismatch between the static semantics of contexts, handled by quasiquotes at compilation time,

and the dynamic semantics of free variables it is supposed to represent.

The solution adopted in Squid is to disallow arbitrary refinements of abstract contexts. In

quasiquote macros, whenever an abstract context C is intersected with any other context D, an

implicit disjointness evidence of type C <> D is searched for. If no such evidence is found, the

quasiquotation fails. Type <>[N,C] is a simple parametric class with a private constructor, so that

Squid only can create instances of it. All evidence of type A <> B are generated automatically for

all appropriate concrete contexts by an implicit Scala macro, that checks that A and B share no

common field names. Other instances are obtained by composition of implicit assumptions. As a
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consequence, the definitions of intro, outro and compose seen above do not compile anymore. The

new valid definitions follow:

type No_s[C] = C <> {s: Any} // Abbreviation to avoid repetition

def intro[C](n: Code[Int, C])(implicit ev: No_s[C]) = code"(?s : String) take $n"

def outro[C](m: Code[String, C{ s: String }])(implicit ev: No_s[C]) = code"(s: String) => $m"

def compose[C](x: Code[Int, C])(implicit ev: No_s[C]) = outro(intro(x))

Note that the types of the variables have no importance for disjointness evidence, so C <> {s: Any}

and C <> {s: String} are interchangeable. With these new definitions in place, the offending term

that exposed the unsoundness, compose(code"?s : Int"), is now rejected with a compile-time error

that reads “Cannot prove that {s: Int} <> {s: Any}.”

Run and Closed Terms. Squid’s run method is type-safe, as it statically rejects the evaluation of

code that potentially contains free variables. This is achieved by making run require an implicit

parameter which acts like an evidence [Oliveira et al. 2010] that the context of the term being

ran is the empty context. We reproduce the signature of run below, as it appears as part of the

Code[+Typ,-Ctx] class:

def run (implicit ev: Ctx =:= {}): Typ = ...

The implicit parameter ev expresses a requirement for an evidence that Ctx be the empty context

{}. Evidence of the form A =:= B are generated by Scala’s standard library when the subtyping

relations A <: B and B <: A are satisfied. As a result, it is impossible to call .run on a term that is not

closed. For example, code"?x:Int".run results in a compilation error reading “cannot prove that

{x:Int} =:= {},” while code"val x = 123; ${ code"println(?x)" }".run compiles
16
and prints 123

to the console. This approach subsumes the use of environment classifiers as originally implemented

in MetaOCaml [Kiselyov 2014; Taha and Nielsen 2003].

4.5 Abstracting Over Names
In the system we have seen so far, the names of free variables are not first-class. For instance,

there is no way to make a function that manipulates code of type Code[Int,{ν:Int}] for all possible
names ν . This is limiting, especially when we want to define recursive functions that introduce

new non-conflicting names into a context on each recursive call [Nanevski 2002]. Squid provides a

natural way to abstract over individual names, using context abstraction (Section 4.3) and Scala’s

path-dependent types [Amin et al. 2016]. Squid provides the Variable data type, with interface:

class Variable[Typ] { type Ctx >: Fresh ; def toCode: Code[Typ,Ctx] // >: indicates supertype bound

def substitute[T,C](pgrm: Code[T, Ctx & C], v: Code[Typ,C]): Code[T,C] }

An instance of Variable represents a free variable with a unique name (internally, Squid generates

a fresh name on every instantiation). This is encoded by each instance having a separate type
member Ctx representing that name — the Fresh supertype bound17 on Ctx indicates that Ctx is

“fresh,” in the sense that it does not conflict with any other names. We can obtain a reference to a

free variable via its method toCode, and we can (partially) close a program fragment pgrm in which

the variable is free by substituting every one of its occurrences using method substitute. Note

that nothing explicitly says that type Ctx should contain a single free variable, but the existence

16
Without a type annotation, free variable x is inferred to be of type Any — the type expected by println.

17 Fresh is a phantom type used to mark fresh contexts. We cannot use subtype bounds for marking, because for any C,

C & Fresh <: Fresh, so we could tag any open term as having a fresh context, as Code[Int,C] <: Code[Int,C & Fresh].
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of substitute indirectly constrains it to. We can now express the (path-dependent) type of a

function that manipulates code open in some free variable ν without referring to that variable’s

name: (ν:Variable[Int]) => (p:Code[Int,ν.Ctx]) => ...

Having the ability to write functions that recursively build contexts made of abstract names is

particularly valuable whenwewant to extract an arbitrary number of bindings via pattern-matching.

Such a case arose in our previous work [Parreaux et al. 2017a], in the context of stream fusion: we

needed to analyze the argument in calls to the stream flatMap function, in order to separate the

main lambda abstraction passed from its captured enclosing state, so that we could make that state

“resettable” by turning every bound value into a bound mutable reference that could be reset to its

initial value at will. To achieve this, we had to resort to using an unsafe scope extrusion mechanism

that, when misused, could create unbound variable errors at runtime (the close function).

We now provide a safer algorithm that achieves the same goal. The function below takes a

program made of let-bindings followed by one lambda abstraction, and turns that into a program

that returns a tuple made of one lambda abstraction with the same semantics, along with an effectful

thunk that, when executed, resets the state of that lambda. For mutable references, we use a Ref

data type with the usual !r and r := v operations for getting and setting the value, respectively:

def rec[T, C >: Fresh](p:Code[T,C], reset:Code[Unit,C]): Option[Code[(T,() => Unit),C]] = p match {

case code"val x: $t = $xv; $body" =>

val v = new Variable[Ref[xt.Typ]] ; val freshBody = body.x ~> code"!${v.toCode}"

rec(freshBody, code"$reset; ${v.toCode} := $xv") match { case Some(r) =>

val unfresh = v.substitute(r, code"?xr : Ref[$xt]")

Some(code"val xr = Ref($xv); $unfresh") case None => None }

case code"(a: $ta) => $body" => Some(code"(((a: $ta) => $body): T, () => $reset)")

case _ => None }

Function rec recursively analyses a program’s binding structure, wrapping each bound value into

a Ref, and accumulating a reset expression representing how to reset these references. Notice

how we are able to recursively call rec on freshBody, which has type Code[T, C & v.Ctx], without

requiring a C <> v.Ctx disjointness evidence (Section 4.4); this is thanks to the fact that Squid sees

v.Ctx is a super type of Fresh, meaning that it is disjoint from any context except itself.

As an example usage, consider the following invocation (where """ delimits multi-line strings):

rec(code"val x = readInt; val y = Ref(x); (a: Int) => {y := !y + 1; a + !y}", ir"()")

→ Some(code""" val x_0 = Ref(readInt); val x_1 = Ref(Ref(!x_0));

( (a_1: Int) => {!x_1 := !(!x_1) + 1; a_1 + !(!x_1)},

() => {(); x_0 := readInt; x_1 := Ref(!x_0)} ) """)

4.6 Use of Runtime Reflection and Metaprogramming

Implementation of run and compile.Method run is implemented using Java reflection to load

the classes mentioned in the program fragment and execute their methods. An alternative method

compile invokes the Scala compiler at runtime to produce efficient JVM bytecode from a program

fragment, and then execute it without any interpretative penalty. This enables Multi-Staged Pro-

gramming [Taha and Sheard 1997] (MSP), a form of explicit partial evaluation. In MSP, the original

program generates a program at runtime (first stage), which may in turn generate new programs

(second stage, etc.), each time removing computations that are known at the current stage, so that

an efficient implementation is finally synthesized that executes faster than its unstaged counterpart.
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Subtype Checking in Code PatternMatching. As mentioned in the context of λ { } in Section 3.3,

Squid makes use of Scala runtime type representations, that it packages with the program fragments.

This is because subtyping checks are performed at runtime to guide pattern matching on those frag-

ments.
18
Thanks to Scala’s reflection features, we perform subtyping checks at runtime, leveraging

Scala’s advanced type system almost for free. For example, pattern case code"$ls: Seq[AnyVal]"

should match code"List(1,2,3)" because List[Int] <: Seq[AnyVal], but should not match some-

thing like code"List(4.toString)" or it would lead to inconsistencies in reconstructed programs (cf.,

String ≮: AnyVal). Note the necessity to annotate holes for which Scala cannot locally infer a type,

like for $ls in the pattern example above. In contrast, pattern code"Math.pow($x,$y)" is fine because

Math.pow is not overloaded nor polymorphic and only works with arguments of type Double.

5 A REAL USE CASE: QUERY COMPILERS
In this section, we discuss a common application of metaprogramming techniques: query compi-

lation, which is currently an active area of database research. We have built a number of query

compilers over the past years, including DBToaster [Ahmad and Koch 2009; Koch et al. 2014]

and LegoBase [Klonatos et al. 2014; Shaikhha et al. 2016], which had their part in starting and

accelerating this trend. Building these systems required substantial effort, due to the need for gener-

ating low-level database code with state-of-the-art performance from queries expressed in complex

high-level languages (like SQL). Most existing query compilers are difficult to maintain because

they work by basic template expansion, generating all the code in a single pass. To better separate

the concerns of achieving advanced code optimization, one needs to design several independent

transformation passes corresponding to different levels of abstraction [Shaikhha et al. 2016]. These

passes should be statically type- and scope-checked to avoid potential mistakes. Squid is an answer

to the metaprogramming needs discovered while iterating over the design of these compilers.

Squid is already used as part of real systems such as LegoBase, but to best explain the kinds of

transformations used in our systems, we have designed a simpler, stripped down query compiler

built entirely with Squid, available online.
19
In the rest of this section, we describe two of its central

transformations: schema specialization and row-to-column store transformation.

5.1 Schema Specialization
Relational databases work by keeping some metadata (called the data dictionary) that represents

what type of data is stored and its relation with the logical schema of the database. In a classical

database system, this metadata is processed at run-time to determine how the data should be

accessed and modified, given a high-level logical specification obtained from a query. This incurs

high interpretive overhead, as it means that schema information has to be read over and over again,

resulting in much repeated work, and that data accesses have to go through indirection.

The goal of the Schema Specialization transformer is to optimize or stage away all this overhead,

specializing a query program to the current schema of the database (once it stops changing) and

removing most of the indirection that would normally happen at query evaluation time. This

transformer works similarly to partial evaluation, where the speculative rewrite rules of Squid are

used as some form of dynamic binding time analysis [Jones et al. 1993], to extract the static parts

from arbitrary programs. For example, we specialize query programs that use schemas expressed as

lists of field information and completely remove that list data structure from the residual programs.

18
Note that type information needs only be associated with program fragments, and not with current-stage values, which

means we introduce no runtime overhead for normal computations not involving metaprogramming.

19
This example and others can be found on the Squid open source repository: https://github.com/epfldata/squid/.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 13. Publication date: January 2018.

https://github.com/epfldata/squid/


13:26 Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch

Consider the following data structures, used as the basis of a high-level query execution engine.

To simplify the presentation, we assume that all columns of the relation are of type String. (In

practice, modular abstraction with Scala path-dependent types can be used to abstract over the

types, similar to CodeType in Section 4.1.) Instances of class Row internally store a list of column

values, and instances of Schema store the list of the names associated to each of these columns:

class Row(values: List[String], size: Int) { ... } ; class Schema(columnNames: List[String]) { ... }

We want to transform a query program such as val s0 = new Schema("name","age"); Relation.scan ("

data.csv",s0).project(Schema("age")).print into a programwhere the scan, project and printmethods

are inlined to their underlying loop structures, which usemethods Row.getField and Schema.indicesOf,

so that we can then remove the schema data structure entirely. In the excerpt below, we show one

particular rule of the schema specializer:

case code"val s = new Schema(List($colNames*)); $body" => // 'colNames' extracts a variable number

(body fix_rewrite { // of arguments as a sequence of terms

case code"${body.s}.columnNames => code"List($colNames*)"

case code"($r: Row).getField(${body.s}, $name)" if colNames.contains(name) =>

val index = colNames.indexOf(name); code"$r.getValue(${Const(index)})"

case code"${body.s}.indicesOf(List[String]($colNames2*))" =>

val columnIndexMap = colNames.zipWithIndex.toMap

val indices = colNames2.map(columnIndexMap).map(Const)

code"List($indices*)" }).s ~> abort() }

The asterisk at the end of $colNames* indicates that we are extracting a variable list of arguments,

giving colNames type Seq[Code[String,_]] (omitting it, we would match a single argument).

After this transformer is applied, we execute a general-purpose List partial evaluator (also written

using Squid) to remove all schema indirections from the program. The following transformers in

the pipeline of our query compiler then transform collections of rows (which are internally backed

by a List of fields) into collections of tuples (which provide faster access to their components), with

calls to row.getValue(i) with a constant index i are converted into tuple accesses.

5.2 Row-to-Column Store Transformer
Classical relational database systems such as IBM DB2, Oracle, and Microsoft SQL Server are “row-

stores,” meaning that they store all their data records one after the other in memory. However, many

recent systems, such as Vertica, SAP HANA, and others, have experimented with a “column-store”

system where, for each fields of the records of a particular table, a separate storage structure is

used — column stores are a very prominent research topic in databases, starting with C-store

[Stonebraker et al. 2005]. Each approach has pros and cons, but database systems are currently

either developed one way or the other, with no way to reconfigure them after the fact.

In our previous work [Klonatos et al. 2014; Shaikhha et al. 2016], we showed how to automatically

translate one kind of system to the other. Squid makes that transformation type-safe (i.e., more

robust) and much easier to express, as we saw in Section 2.5 — in essence, the array-of-structs

to struct-of-arrays optimization shown in Figure 1 corresponds to the row-store to column-store

transformation of databases, when expressed in the context of in-memory query compilation.

6 RELATEDWORK
We now present some related work, starting from existing real-world quasiquotation systems on to

multi-stage research calculi, type-safe representations of code manipulation, and query compilation.
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6.1 ExistingQuasiquotation Systems
While the idea of quasiquotation is old [Quine 1940], Lisp was the language that pioneered its

usage as a metaprogramming construct [Bawden et al. 1999]. Treating code as data meant that

no special restrictions or mechanisms were in place to prevent common errors associated with

code manipulation, such as unintended variable capture (lack of hygiene), scope extrusion and type

mismatches (lack of static typing). Scheme introduced facilities to write hygienic macros [Abelson
et al. 1991; Culpepper and Felleisen 2004; Kohlbecker et al. 1986] using a safer form of quotation

that separates identifiers appearing at different compilation phases (i.e., distinguishing identifiers

introduced by a macro from those present in the original program). However, within a single phase

it is still possible to observe unintended variable capture. Rhiger [2012a] proposed a finer-grained

hygiene system for Scheme-like code quasiquotes, but it does not support pattern matching on code

values. The idea of code quasiquotation was picked up in a statically-typed context by Taha and

Sheard [2000] with MetaML (and subsequently MetaOCaml [Taha 2004]) to enable Multi-Stage

Programming (MSP). The approach was ported to compile-time macros by Ganz et al. [2001] with

MacroML. In these systems, quasiquotes can only generate and not inspect code — though MacroML

has some limited form of pattern–template expansion that borrows from Scheme’s hygienic macro

system. In these approaches, quasiquotes are a direct extension to the type system of ML which

provides static guarantees about the code they generate: it is well-typed and well-scoped, except in

the presence of imperative effects, which can lead to scope extrusion (cf., Section 1.4).

With Template Haskell (TH), Sheard and Jones [2002] introduced compile-time metaprogram-

ming to Haskell using quasiquotes which had some notions of type awareness and hygiene, but

could easily generate ill-typed and ill-scoped code, therefore providing weaker guarantees than

MetaOCaml. Typed Template Haskell (TTH) later added type-safe quasiquotes similar to MetaO-

Caml. Neither MetaOCaml nor TH/TTH support term deconstruction via quasiquotes in pattern

matching. However, a general quasiquote syntax (not restricted to code quasiquote) was later added

to Haskell by Mainland [2007] and could in principle be used to enable quasiquote-based code

pattern matching in Haskell. A similar general quasiquote system exists in Scala and is used by

the Scala Reflection API to provide Lisp-like untyped code quasiquotes with pattern matching

[Shabalin et al. 2013]. This is the very system used by Squid, with the difference that Squid uses

type-aware macros to create an advanced extension to Scala’s type system, enabling static checking

that makes quasiquotation safe. The Scala reflection API has an alternative type-safe and hygienic

reify/splice system that can be used for program generation (reify acts like quotation and

splice like antiquotation), but that system does not allow the expression of open code and does

not support pattern matching, greatly limiting its usefulness.

Several other languages such as F# [Syme 2006] support different flavors of quasiquotes that fall

into the categories defined above. Table 1 summarizes the features supported by quasiquotes in

our paper and in several other systems. The Stratego snippet uses an example object language, but

Stratego is not tied to any particular language. The asterisk (*) on the “well-scoped” and “hygienic”

criteria for TTH denotes that these properties are achieved by forbidding any effects in the code

generator, which can be restrictive and prevents e.g., effectful let-insertion [Kameyama et al. 2014].

6.2 Previous Squid Implementations
In its original implementation [Parreaux et al. 2017b], the Squid type-safe metaprogramming

framework provided statically-typed quasiquotes, but with limited pattern matching capabilities.

The only way to match bindings was to use higher-order pattern variables (similar to what was

proposed by Sheard et al. [1999]), which means that matching the body of a binding construct

necessarily resulted in a function term, so one could never really separate open code from its
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enclosing binding. This posed problems when one wanted to change the nature of a binding (such

as what happens in Figure 1 and in the example of Section 4.5), or when one wanted to open

a binding, explore its body, and drive the reconstruction of that binding based on information

gathered from the body — indeed, the reconstruction of the binding structure had to be set up before

we could actually see the body. Squid was used to enable quoted staged rewriting, an approach

to library-defined optimizations [Parreaux et al. 2017a]; in that work, we needed to work around

these limitations and used an unsafe ‘close’ function to temporarily treat some open term as closed.

Misuses of that construct could lead to scope extrusion problems. In addition, users could call .run

on arbitrary pieces of code, including open terms; this would result in runtime crashes. In contrast,

Squid’s new contextual quasiquote system, presented in this paper, allows for very flexible binding

analysis and reconstruction, while statically preventing scope extrusion and unbound variable

reference errors.

Beyond more flexible pattern matching, we also found that expressing open terms using explicit

free variables was a useful metaprogramming technique in its own right. For example, it allows

for more relaxed multi-stage programming patterns, as noted by Kim et al. [2006]. This technique

would not be type-safe without contextual quasiquotes.

6.3 Multi-Stage Formal Calculi
Numerous multi-stage calculi based on modal logic have been developed that relate to our approach,

including λ□ [Davies and Pfenning 2001] and λ⃝ [Davies 1996], which inspired the design of

MetaML. To prevent the evaluation of open code, Taha and Nielsen [2003] mention the possibility

of reflecting context requirements in the type of terms but choose the more lightweight approach

of environment classifiers, which unfortunately does not prevent imperative effects from causing

scope extrusion. The systems by Nanevski [2002], Kim et al. [2006], as well as λ[ ] by Rhiger [2005,

2012b] use the contextual approach and do not have this problem. This approach was later given a

foundational treatment by Nanevski et al. [2008], who presented an intuitionistic modal logic of

necessity and its proof theory, and from this logic develop a contextual modal type theory, showing

howmodalities of necessity map to contexts. They discuss this type theory in the contexts of staging

and logical frameworks. While we created our formal system by abstracting from the practical

considerations of Squid pointed at throughout our paper, the type-theoretic development carried

over from that line of work turns out to be strongly analogous. Most notably, the ν�
calculus by

Nanevski [2002] presents code pattern matching using higher-order pattern variables (similar to

what we used in [Parreaux et al. 2017a]), along with support for first-class manipulation of names

(analogous to Section 4.5; but not formalized in λ { }). In contrast, our calculus is not limited to two

stages, allows for more flexible patterns that can match free variables, and lets pattern variables

implicitly capture their local context. This gives us a simpler, yet more expressive account of code

pattern matching. Furthermore, we allow the hygienic rewriting of all subterms of a code value at

arbitrary depths
20
(the rewrite construct), unlocking the power of speculative rewrite rules.

It is worth noting that environment classifiers were eventually replaced by runtime checks in

MetaOCaml because they gave “good protection (a type error) against only rare errors, while being
cumbersome always” [Kiselyov 2017]. They also gave relatively unhelpful error messages such as

“error: ’a not generalizable in (’a, int) code,” while in Squid context errors manifest as

understandable subtyping violations and disjointness proof failures such as “Cannot prove that

{s: Any} <> {s: Int}” (see Section 4.4). Nevertheless, the problems of environment classifiers with

mutable references were eventually solved via refined environment classifiers by Kiselyov et al.

[2016], who gave a nice intuition on why using partially-ordered type variables is sufficient to solve

20
Note that rewrite cannot be encoded with pattern matching in ν�

(or in λ{}) as that would require polymorphic recursion.
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the same problems as e.g., Rhiger [2012b]. However, whether refined environment classifiers can

be extended to reason about pattern matching is an open question.

Cross-Stage Persistence (CSP) has been an important design consideration in MetaML. CSP

allows a value defined in some stage to persist to a further stage. For example, fun x→⟨ x ⟩ lifts an
integer value into a constant code value. Complications arising from the interaction of this feature

with run prompted the use of explicit CSP annotations by Taha and Nielsen [2003]. In addition,

general CSP does not work well in real-world language implementations [Kiselyov 2017], where

there is no clear semantics for persisting non-serializable local values (such as mutable references).

For this reason, Squid simply makes a distinction between statically-accessible symbols, such as

classes, modules and methods, and local values. References to the latter cannot be directly persisted,
and they must be serialized appropriately, by using static symbols and the Const constructor. Finally,

we noticed that in some cases where MetaML requires CSP, we eschew it thanks to the use of

non-lexically-scoped free variables (or explicit free variables, in Squid). For example, program

⟨fun x → ~(run ⟨ ⟨x⟩ ⟩)⟩ which in [Taha and Nielsen 2003] requires ‘[.]’ classifier and ‘%’ CSP anno-

tations as in ⟨fun x → ~((run (a) ⟨%⟨x⟩ ⟩)[b])⟩, can be written without any notion of CSP or classifiers

in λ { } as ⌈λx : Int. ⌊run ⌈⌈x⌉⌉⌋⌉ and in Squid as code"(x: Int) => ${ code{code"?x:Int"}.run }"

(where code{...} is an alternative syntax for code"..." that helps with nested quotations).

6.4 Safe Program Manipulation
Guarantees about manipulated programs have been encoded via the host language’s type system

using techniques such as Generalized Algebraic Data Types (GADTs) [Cheney and Hinze 2003;

Xi et al. 2003], Higher-Order Abstract Syntax (HOAS) [Pfenning and Elliott 1988], applicative

functors and monads [Kameyama et al. 2014], and De Bruijn indices [Carette et al. 2009; Sheard

et al. 2005]. However, these are often heavyweight and impose a significant cost on domain experts,

who have to deal with complicated type encodings, whereas they would just like to express code

transformations as simple rewrite rules. In particular, we found that GADTs are hard to manipulate

in systems like Haskell and Scala [Giarrusso 2013; Rompf 2016]. “Type-based embedding” systems

like LMS [Rompf and Odersky 2010] use implicit conversions to compose code fragments, but this

approach is complicated [Jovanovic et al. 2014] and is not applicable to code pattern-matching.

FreshML [Shinwell et al. 2003] is an extension of ML specifically designed to soundly manipulate

variable bindings in metaprograms. Similarly, Cαml [Pottier 2006] allows metaprogrammers to

define binding specifications that help write programs dealing with α-conversion. These systems are

powerful, but they are not directly concerned with whether manipulated programs are well-typed.

Stratego [Visser 2002] is a system of composable program transformations that can express

rewrite rules using the concrete object syntax, which makes it closely related to quasiquote-based

approaches. The major difference with our approach is that Stratego deals with external DSLs,

and that its transformations are not statically typed, so they only offer syntactic guarantees about

generated programs. Several approaches base program analysis and transformation on variants of

the visitor pattern [Hudak 1998; Ureche et al. 2015]. They are appropriate for a certain range of

transformations that only access one level of program trees, but scale poorly to more advanced

use-cases.
21
Being able to pattern-match and discover the shape of subprograms is an invaluable

asset, making analyses and rewritings both concise and powerful. GHC rewrite rules [Jones et al.

2001] provide a simple interface for domain exerts to write transformations, but they are limited to

simple rewritings (syntax expansion similar to hygienic macros in Scheme).

Squid focuses on manipulating expressions. It is not clear how a type system would capture

type-safe modifications of higher-level entities such as modules and classes (where transformations

21
Private communication with the author of [Ureche et al. 2015], March 2016.
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are not usually type-preserving). Some approaches like SafeGen [Huang et al. 2011] and Morphing

[Huang and Smaragdakis 2011] have attacked the problem of transforming such constructs, using

custom rules and external tools such as theorem provers to make sure that some desirable properties

be preserved throughout these transformations. However. these systems have provided very little

in the way of transforming expressions, so we view them as complementary counterparts to Squid.

6.5 Query Compilation
Query compilation has been employed in database systems since the dawn of the relational database

era: the very first relational database system, IBM’s System R, used query compilation in its early

prototypes, but this approach was quickly abandoned in favor of query interpretation. Chamberlin

et al. [1981] explain that this was ultimately due to the impracticality of writing andmaintaining code

generators for query engines, rather than the query engine code itself, in this early time of databases,

when architectures and algorithms were still very much in flux and subject to experimentation.

What is not explicitly stated there, though very clear, is that modern metaprogramming would

have helped making the construction of query compilers much more manageable and sustainable.

Recently, also thanks to advances in programming languages and technologies such as LLVM,

query compilation has returned to the limelight of databases, with commercial systems such

as StreamBase, IBM Spade, Microsoft’s Hekaton, Cloudera Impala, and MemSQL employing it.

Academic research has also intensified [Ahmad and Koch 2009; Armbrust et al. 2015; Crotty et al.

2015; Karpathiotakis et al. 2015; Klonatos et al. 2014; Koch 2010, 2014; Koch et al. 2014; Krikellas

et al. 2010; Nagel et al. 2014; Neumann 2011; Rompf and Amin 2015; Viglas et al. 2014].

7 CONCLUSION
We showed how to best bring together the advantages of analytic and statically-typed quasiquotes.

We formalized the approach as λ { } , a multi-stage calculus with pattern matching on code values

that allows safe scope extrusion and rewriting of open code. We have demonstrated Squid, an

embedding of λ { } in Scala as a macro library, and shown how it enables type-safe metaprogramming.

In particular, we introduced “speculative rewrite rules,” an important class of optimizations based

on flexible manipulations of variable bindings. We used these techniques to implement several

query compiler optimizations, giving us confidence that they scale to real-world use cases.
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