Polarization and Channel Ordering: Characterizations and Topological Structures

Information theory is the field in which we study the fundamental limitations of communication. Shannon proved in 1948 that there exists a maximum rate, called capacity, at which we can reliably communicate information through a given channel. However, Shannon did not provide an explicit construction of a practical coding scheme that achieves the capacity. Polar coding, invented by Arikan, is the first low-complexity coding technique that achieves the capacity of binary-input memoryless symmetric channels. The construction of these codes is based on a phenomenon called polarization. The study of polar codes and their generalization to arbitrary channels is the subject of polarization theory, a subfield of information and coding theories. This thesis consists of two parts. In the first part, we provide solutions to several open problems in polarization theory. The first open problem that we consider is to determine the binary operations that always lead to polarization when they are used in Arikan-style constructions. In order to solve this problem, we develop an ergodic theory for binary operations. This theory is used to provide a necessary and sufficient condition that characterizes the polarizing binary operations, both in the single-user and the multiple-access settings. We prove that the exponent of a polarizing binary operation cannot exceed 1/2. Furthermore, we show that the exponent of an arbitrary quasigroup operation is exactly 1/2. This implies that quasigroup operations are among the best polarizing binary operations. One drawback of polarization in the multiple-access setting is that it sometimes induces a loss in the symmetric capacity region of a given multiple-access channel (MAC). An open problem in MAC polarization theory is to determine all the MACs that do not lose any part of their capacity region by polarization. Using Fourier analysis, we solve this problem by providing a single-letter necessary and sufficient condition that characterizes all these MACs in the general setting where we have an arbitrary number of users, and each user uses an arbitrary Abelian group operation on his input alphabet. We also study the polarization of classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation, and an Arikan-style transformation is applied using this operation. We show that as the number of polarization steps becomes large, the synthetic cq-channels polarize to deterministic homomorphism channels that project their input to a quotient group of the input alphabet. This result is used to construct polar codes for arbitrary cq-channels and arbitrary classical-quantum multiple-access channels (cq-MAC). In the second part of this thesis, we investigate several problems that are related to three orderings of communication channels: degradedness, input-degradedness, and the Shannon ordering. We provide several characterizations for the input-degradedness and the Shannon ordering. Two channels are said to be equivalent if they are degraded from each other. Input-equivalence and Shannon-equivalence between channels are similarly defined. We construct and study several topologies on the quotients of the spaces of discrete memoryless channels (DMC) by the equivalence, the input-equivalence and the Shannon-equivalence relations. Finally, we prove the continuity of several channel parameters and operations under various DMC topologies.

Telatar, Emre
Lausanne, EPFL
Autres identifiants:
urn: urn:nbn:ch:bel-epfl-thesis7912-7

Note: Le statut de ce fichier est: Anyone

 Notice créée le 2017-10-16, modifiée le 2020-04-20

Télécharger le document

Évaluer ce document:

Rate this document:
(Pas encore évalué)