Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Hierarchical Cardiac-Rhythm Classification Based on Electrocardiogram Morphology
 
conference paper

Hierarchical Cardiac-Rhythm Classification Based on Electrocardiogram Morphology

Sopic, Dionisije  
•
De Giovanni, Elisabetta  
•
Aminifar, Amir  
Show more
2017
2017 Computing in Cardiology (CinC)
Computing in Cardiology (CinC)

Atrial Fibrillation (AF) is a type of cardiac arrhythmia that significantly increases the risk of stroke and heart failure. In general, in the case of patients affected by AF, their electrocardiogram (ECG) shows a typical pattern of irregular RR intervals and abnormal P waves. However, discriminating AF from a normal sinus rhythm or from other types of rhythms remains a challenging problem today. Methods: We analyze the database of PhysioNet/Computing in Cardiology Challenge 2017 to validate our heart rhythm classification technique. The database contains short-term ECG recordings, labelled as normal sinus rhythm, AF, other types of rhythm, and noise. We extract different morphology-based features of ECG signals, and we design a multiclass classifier based on error-correcting output codes, along with a random forest classifier for binary decision making. Results: We test the performance of our classifiers based on the F1 score of each class and the average F1 score of all the classes. The final F1 score obtained on the hidden test set of challenge is 80%. Conclusions: Our results show that our classifier is robust and that it is able to discriminate AF from normal sinus, other rhythms, and noise, based on the morphology of the ECG signal.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CinC2017CameraReady_2.pdf

Access type

openaccess

Size

407.27 KB

Format

Adobe PDF

Checksum (MD5)

b26949b2674c3f78879dd93c72633a16

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés