Inboard and outboard radial electric field wells in the H- and I-mode pedestal of Alcator C-Mod and poloidal variations of impurity temperature

We present inboard (HFS) and outboard (LFS) radial electric field (Er) and impurity temperature (Tz) measurements in the I-mode and H-mode pedestal of Alcator C-Mod. These measurements reveal strong Er wells at the HFS and the LFS midplane in both regimes and clear pedestals in Tz, which are of similar shape and height for the HFS and LFS. While the H-mode Er well has a radially symmetric structure, the Er well in I-mode is asymmetric, with a stronger ExB shear layer at the outer edge of the Er well, near the separatrix. Comparison of HFS and LFS profiles indicates that impurity temperature and plasma potential are not simultaneously flux functions. Uncertainties in radial alignment after mapping HFS measurements along flux surfaces to the LFS do not, however, allow direct determination as to which quantity varies poloidally and to what extent. Radially aligning HFS and LFS measurements based on the Tz profiles would result in substantial inboard-outboard variations of plasma potential and electron density. Aligning HFS and LFS Er wells instead also approximately aligns the impurity poloidal flow profiles, while resulting in a LFS impurity temperature exceeding the HFS values in the region of steepest gradients by up to 70%. Considerations based on a simplified form of total parallel momentum balance and estimates of parallel and perpendicular heat transport time scales seem to favor an approximate alignment of the Er wells and a substantial poloidal asymmetry in impurity temperature.

Published in:
Nuclear Fusion -Original Edition-, 54, 083017
International Atomic Energy Agency

 Record created 2017-09-30, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)