Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Cross-lingual Transfer for News Article Labeling: Benchmarking Statistical and Neural Models
 
report

Cross-lingual Transfer for News Article Labeling: Benchmarking Statistical and Neural Models

Mrini, Khalil  
•
Pappas, Nikolaos  
•
Popescu-Belis, Andrei  
2017

Cross-lingual transfer has been shown to increase the performance of a text classification model thanks to the use of Multilingual Hierarchical Attention Networks (MHAN), on which this work is based. Firstly, we compared the performance of monolingual and mulitilingual HANs with three types of bag-of-words models. We found that the Binary Unigram model outperforms the HAN model with Dense encoders on the full vocabulary in 6 out of 8 languages, and ties against MHAN with the Dense encoders, when it uses the full vocabulary i.e. many more parameters than neural models. However, this is not true when we limit the number of parameters and (or) we increase the sophistication of the neural encoders to GRU or biGRU. Secondly, new configurations of parameter sharing were tested. We found that sharing attention at the sentence level was the best configuration by a small margin when transferring from 5 out of 7 languages to English, as well as for cross-lingual transfer between English and Spanish, Russian, and Arabic. The tests were performed on the Deutsche Welle news corpus with 8 languages and 600k documents.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

idiap_project_report.pdf

Access type

openaccess

Size

210.67 KB

Format

Adobe PDF

Checksum (MD5)

133d689e51d1c49a0aaea3b90a647a2c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés