Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Maya Codical Glyph Segmentation: A Crowdsourcing Approach
 
research article

Maya Codical Glyph Segmentation: A Crowdsourcing Approach

Can, Gulcan
•
Odobez, Jean-Marc  
•
Gatica-Perez, Daniel  
March 1, 2018
IEEE Transactions on Multimedia

This paper focuses on the crowd-annotation of an ancient Maya glyph dataset derived from the three ancient codices that survived up to date. More precisely, non-expert annotators are asked to segment glyph-blocks into their constituent glyph entities. As a means of supervision, available glyph variants are provided to the annotators during the crowdsourcing task. Compared to object recognition in natural images or handwriting transcription tasks, designing an engaging task and dealing with crowd behavior is challenging in our case. This challenge originates from the inherent complexity of Maya writing and an incomplete understanding of the signs and semantics in the existing catalogs. We elaborate on the evolution of the crowdsourcing task design, and discuss the choices for providing supervision during the task. We analyze the distributions of similarity and task difficulty scores, and the segmentation performance of the crowd. A unique dataset of over 9000 Maya glyphs from 291 categories individually segmented from the three codices was created and will be made publicly available thanks to this process. This dataset lends itself to automatic glyph classification tasks. We provide baseline methods for glyph classification using traditional shape descriptors and convolutional neural networks.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Can_IEEETMM_2017.pdf

Access type

openaccess

Size

8.05 MB

Format

Adobe PDF

Checksum (MD5)

468831341739a082388083847770d050

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés