Utilization of wavelet-based damage-sensitive features for structural damage assessment of steel braced frames

Rapid structural damage assessment methodologies for engineered facilities are essential in order to properly allocate and ensure efficient use of emergency rescue forces, minimize business interruption and perform effective repairs in damaged infrastructure in the aftermath of an earthquake. This paper assesses the efficiency of a recently developed “nonmodelbased” damage-sensitive feature based on wavelet analysis that can be used as a structural damage indicator in steel concentrically braced frames. The implementation of the wavelet-based damagesensitive feature for structural damage detection is validated through the utilization of large-scale shake table tests of a single-story concentrically braced frame tested at E-Defense in Japan. The wavelet-based damage sensitive feature is further assessed through the utilization of numerical simulations of a multi-story concentrically braced frame. It is shown that key engineering demand parameters such as peak story drift ratios, peak floor absolute accelerations and residual story drift ratios are well correlated with the wavelet-based damage-sensitive feature.

Presented at:
4th Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Zurich, Switzerland, September 13-15, 2017
Zurich, EMPA

 Record created 2017-09-18, last modified 2019-12-05

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)