Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nonlinear graphene quantum capacitors for electro-optics
 
research article

Nonlinear graphene quantum capacitors for electro-optics

Khorasani, Sina
•
Koottandavida, Akshay
2017
npj 2D Materials and Applications

Owing to its peculiar energy dispersion, the quantum capacitance property of graphene can be exploited in a two- dimensional layered capacitor configuration. Using graphene and boron nitride, respectively, as the electrodes and the insulating dielectric, a strongly nonlinear behavior at zero bias and small voltages is obtained. When the temperature is sufficiently low, the strong nonlinear interaction emerging from the quantum capacitance exhibits a diverse range of phenomena. The proposed structure could take over the functionalities of nonlinear elements in many cryogenic quantum systems, and in particular, quantum electrooptics. It is shown that ultrastrong coupling is easily reached with small number of pump photons at temperatures around 1 K and capacitor areas of the order of 1 mu m(2). A measure of anharmonicity is defined and as potential applications, a qubit design as well as schemes for non- reciprocal devices such as an electromagnetic frequency circulator are discussed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41699-017-0011-9.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

729.98 KB

Format

Adobe PDF

Checksum (MD5)

9b53328bf27e65c34c4ed2843a5a626b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés