Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Gyrokinetic modeling of impurity peaking in JET H-mode plasmas
 
research article

Gyrokinetic modeling of impurity peaking in JET H-mode plasmas

Manas, P.
•
Camenen, Y.
•
Benkadda, S.
Show more
2017
Physics Of Plasmas

Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor (R/L-nC) on plasma parameters are investigated via multilinear regressions. A marked correlation between R/L-nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, nu*, and T-e/T-i < 1, the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher nu* and T-e/T-i > 1, the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.4985330
Web of Science ID

WOS:000404639000041

Author(s)
Manas, P.
Camenen, Y.
Benkadda, S.
Weisen, H.
Angioni, C.
Casson, F. J.
Giroud, C.
Gelfusa, M.
Maslov, M.
Corporate authors
JET Contributors
Date Issued

2017

Publisher

Amer Inst Physics

Published in
Physics Of Plasmas
Volume

24

Issue

6

Article Number

062511

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
SPC  
Available on Infoscience
September 5, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/140328
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés