Two-terminal transport measurements with cold atoms

In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now be measured in a way that is directly analogous to solid-state physics, extending cold-atom-based quantum simulations into the domain of quantum electronic devices. In this topical review, we describe the transport experiments performed with cold gases in the two-terminal configuration, with an emphasis on the specific features of cold atomic gases compared to solid-state physics. We present the experimental techniques and the main experimental findings, focusing on-but not restricted to-the recent experiments performed by our group. We finally discuss the perspectives opened up by this approach, the main technical and conceptual challenges for future developments, and potential applications in quantum simulation for transport phenomena and mesoscopic physics problems.


Published in:
Journal Of Physics-Condensed Matter, 29, 34, 343003
Year:
2017
Publisher:
Bristol, Institute of Physics
ISSN:
0953-8984
Keywords:
Note:
Review Article
Laboratories:




 Record created 2017-09-05, last modified 2018-09-13

Publisher's version:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)