Infoscience

Conference paper

Constraint-Based Mining of Sequential Patterns over Datasets with Consecutive Repetitions

onstraint-based mining of sequential patterns is an active research area motivated by many application domains. In practice, the real sequence datasets can present consecutive repetitions of symbols (e.g., DNA sequences, discretized stock market data) that can lead to a very important consumption of resources during the extraction of patterns that can turn even efficient algorithms to become unusable. We propose a constraint-based mining algorithm using an approach that enables to compact these consecutive repetitions, reducing drastically the amount of data to process and speeding-up the extraction time. The technique introduced in this paper allows to retain the advantages of existing state-of-the-art algorithms based on the notion of occurrence lists, while permitting to extend their application fields to datasets containing consecutive repetitions. We analyze the benefits obtained using synthetic datasets, and show that the approach is of practical interest on real datasets.

Fulltext

Related material

Contacts