Files

Abstract

Rhodopsin is a photoactive G-protein-coupled receptor (GPCR) that converts dim light into a signal for the brain, leading to eyesight. Full activation of this GPCR is achieved after passing through several steps of the protein's photoactivation pathway. Key events of rhodopsin activation are the initial cis-trans photoisomerization of the covalently bound retinal moiety followed by conformational rearrangements and deprotonation of the chromophore's protonated Schiff base (PSB), which ultimately lead to full activation in the meta II state. PSB deprotonation is crucial for achieving full activation of rhodopsin; however, the specific structural rearrangements that have to take place to induce this plc shift are not well understood. Classical molecular dynamics (MD) simulations were employed to identify intermediate states after the cis trans isomerization of rhodopsin's retinal moiety. In order to select the intermediate state in which PSB deprotonation is experimentally known to occur, the validity of the intermediate configurations was checked through an evaluation of the optical properties in comparison with experiment. Subsequently, the selected state was used to investigate the molecular factors that enable PSB deprotonation at body temperature to obtain a better understanding of the difference between the protonated and the deprotonated state of the chromophore. To this end, the deprotonation reaction has been investigated by applying QM/MM MD simulations in combination with thermodynamic integration. The study shows that, compared to the inactive 11-cis-retinal case, trans-retinal rhodopsin is able to undergo PSB deprotonation due to a change in the conformation of the retinal and a consequent alteration in the hydrogen-bond (HB) network in which PSB and the counterion.G1u113 are embedded. Besides the retinal moiety and Glu113, also two water molecules as well as Thr94 and Gly90 that are related to congenital night blindness are part of this essential HB network.

Details

PDF