Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On Coordinated Primal-Dual Interior-Point Methods for Multi-Agent Optimization
 
conference paper not in proceedings

On Coordinated Primal-Dual Interior-Point Methods for Multi-Agent Optimization

Bitlislioglu, Altug  
•
Jones, Colin  
2017
56th IEEE Conference on Decision and Control

This paper presents a coordinated primal-dual interior point (PDIP) method for solving structured convex linear and quadratic programs (LP-QP) in a distributed man- ner. The considered class of problems represents a multi-agent setting, where the aggregated cost is to be minimized while respecting coupling constraints as well as local constraints of the agents. Unlike fully distributed methods, a central agent is utilized, which coordinates the Newton steps taken within the interior-point algorithm. In practical PDIP implementations, predictor-corrector variants are widely used, due to their very fast convergence. We show that in the coordinated case, a naive implementation of a PDIP with predictor-corrector scheme introduces extra communication steps between local and central agents. We propose a decentralized predictor-corrector scheme that uses a non-uniform perturbation on the complementary slackness condition, which is able to reduce the number of communication steps while preserving fast convergence of the original methods. We analyse the general framework of PDIP methods with non-uniform perturbations and provide convergence and complexity results, that directly apply to the proposed coordinated PDIP with decentralized predictor- corrector scheme.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

postprint_CoordinatedPrimalDual_CDC.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

728.3 KB

Format

Adobe PDF

Checksum (MD5)

f5c82db396c6dc0b8f2e4c2edc4711b2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés