Infoscience

Thesis

Privacy-Friendly Photo Sharing and Relevant Applications Beyond

Popularization of online photo sharing brings people great convenience, but has also raised concerns for privacy. Researchers proposed various approaches to enable image privacy, most of which focus on encrypting or distorting image visual content. In this thesis, we investigate novel solutions to protect image privacy with a particular emphasis on online photo sharing. To this end, we propose not only algorithms to protect visual privacy in image content but also design of architectures for privacy-preserving photo sharing. Beyond privacy, we also explore additional impacts and potentials of employing daily images in other three relevant applications. First, we propose and study two image encoding algorithms to protect visual content in image, within a Secure JPEG framework. The first method scrambles a JPEG image by randomly changing the signs of its DCT coefficients based on a secret key. The second method, named JPEG Transmorphing, allows one to protect arbitrary image regions with any obfuscation, while secretly preserving the original image regions in application segments of the obfuscated JPEG image. Performance evaluations reveal a good degree of storage overhead and privacy protection capability for both methods, and particularly a good level of pleasantness for JPEG Transmorphing, if proper manipulations are applied. Second, we investigate the design of two architectures for privacy-preserving photo sharing. The first architecture, named ProShare, is built on a public key infrastructure (PKI) integrated with a ciphertext-policy attribute-based encryption (CP-ABE), to enable the secure and efficient access to user-posted photos protected by Secure JPEG. The second architecture is named ProShare S, in which a photo sharing service provider helps users make photo sharing decisions automatically based on their past decisions using machine learning. The photo sharing service analyzes not only the content of a user'€™s photo, but also context information about the image capture and a prospective requester, and finally makes decision whether or not to share a particular photo to the requester, and if yes, at which granularity. A user study along with extensive evaluations were performed to validate the proposed architecture. In the end, we research into three relevant topics in regard to daily photos captured or shared by people, but beyond their privacy implications. In the first study, inspired by JPEG Transmorphing, we propose an animated JPEG file format, named aJPEG. aJPEG preserves its animation frames as application markers in a JPEG image and provides smaller file size and better image quality than conventional GIF. In the second study, we attempt to understand the impact of popular image manipulations applied in online photo sharing on evoked emotions of observers. The study reveals that image manipulations indeed influence people'€™s emotion, but such impact also depends on the image content. In the last study, we employ a deep convolutional neural network (CNN), the GoogLeNet model, to perform automatic food image detection and categorization. The promising results obtained provide meaningful insights in design of automatic dietary assessment system based on multimedia techniques, e.g. image analysis.

Related material

Contacts

EPFL authors