Toward precision medicine: tailoring interventional strategies based on noninvasive brain stimulation for motor recovery after stroke

Purpose of reviewTo support the recovery of disability and the reduced functional capacity influencing the independence of daily life after focal brain lesions like stroke, the application of noninvasive brain stimulation (NIBS) by repetitive transcranial magnetic stimulation or transcranial electric stimulation has been found useful in the last decades. Still, a positive influence on the recovery seems to be restricted to specific subgroups of patients. Therefore, a closer look on individual parameters influencing the recovery course and the effect of NIBS is needed.Recent findingsNeuroimaging studies investigated alterations in neuronal network settings during the recovery process from stroke and can explain a relevant amount of variance in residual motor function. In this regard for instance, the microstructural integrity of the corticospinal tract and its influence on cortical and subcortical functional and structural connectivity alterations shows a relevant impact on individual recovery from the acute to the chronic state.SummaryBased on this understanding, a one-suits-all' NIBS strategy for clinical application appears insufficient and understanding of therapeutic susceptibility to NIBS gained from structural and functional imaging studies will help to develop patient-tailored NIBS-based interventional strategies towards precision medicine, as a promising future prospective within this field.


Related material