Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate

The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10(7) M(-1)s(-1), (4.0 +/- 0.3) x 10(3) M(-1)s(-1) (2.5 +/- 0.2) x 10(3) M(-1)s(-1) and <1 M(-1)s(-1), respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. (C) 2017 Elsevier Ltd. All rights reserved.

Published in:
Water Research, 119, 126-135
Oxford, Pergamon-Elsevier Science Ltd

 Record created 2017-07-10, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)