Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Engineering the self-assembly of diketopyrrolopyrrole-based molecular semiconductors via an aliphatic linker strategy
 
research article

Engineering the self-assembly of diketopyrrolopyrrole-based molecular semiconductors via an aliphatic linker strategy

Jeanbourquin, Xavier A.  
•
Rahmanudin, Aiman  
•
Gasperini, Andrea  
Show more
2017
Journal of Materials Chemistry A

The solid-state self-assembly of molecular semiconductors is a key aspect for controlling the optoelectronic properties of organic electronic materials. Herein, we investigate the use of a flexible linker strategy to control the self-assembly of a solution-processable diketopyrrolopyrrole semiconductor coded as DPP(TBFu)(2). Two distinct dimers-prepared with varied linker position relative to the orientation of the conjugated core-reveal the effect of connectivity on the solid-state self-assembly and optoelectronic properties-favoring either Hor J-type aggregation. The dimer with a "vertical"linker orientation exhibits a poor crystallinity in neat films, but improves hole mobility in OFETs 10-fold, reaching 3.0 x 10(-3) cm(2) V-1 s(-1) when used as an additive with DPP(TBFu)(2). Distinctively, the dimer with a "horizontal" linking orientation does not enhance charge carrier transport, but is found to affect the thermal stability of donor : acceptor blends in OPVs with PCBM. Devices retain 90% of their initial conversion efficiency after 5 hours of thermal stress, compared to only 45% for control devices. Thermodynamic and kinetic rationales further suggest that this flexible linker strategy represents a powerful tool to control supramolecular assembly in molecular semiconductors without altering the nature of the core conjugated segment.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Dimer_preprint.pdf

Access type

openaccess

Size

678.32 KB

Format

Adobe PDF

Checksum (MD5)

845d458241b48b3ee7baf2558e9cec64

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés